Viết các biểu thức dưới dạng lập phương của một tổng hoặc hiệu:
a) a 3 + 12 a 2 + 48a + 64;
b) – b 3 + 6 b 2 + 12b + 8;
c) ( m – n ) 6 – 6 ( m – n ) 4 + 12 ( m – n ) 2 – 8;
d) 8 27 a 3 − 8 3 a 2 b + 8 b 2 a − 8 b 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,-x^3/8 + 3/(4x^2) - 3/(2x) +1`
`=-(x^3/8 - 3/(4x^2) + 3/(2x) - 1)`
`=-(x/2 - 1)^3`
`b,x^6 - 3/(2x^{4} y) + 3/(4x^{2}y^{2}) - 1/(8y^{3})`
`=(x^3 - 1/(2y))^{3}`
Bài 3:
b: Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)+10=0\)
\(\Leftrightarrow6x^2+12-6x^2+12x-6=0\)
hay \(x=-\dfrac{1}{2}\)
Bài 2:
a: \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
b: \(m^3+9m^2n+27mn^2+27n^3=\left(m+3n\right)^3\)
a) \(x^4+4x^2+4=\left(x^2+2\right)^2\)
b) \(\left(2y-x\right)^2+2\left(2y-x\right)+1=\left(2y-x+1\right)^2\)
c) \(\left(2a-4b\right)^2+4a-8b+1=\left(2a-4b\right)^2+2\cdot\left(2a-4b\right)\cdot1+1^2=\left(2a-4b+1\right)^2\)
a) \(\left(2x+1\right)^3\)
\(=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\)
\(=8x^3+12x^2+6x+1\)
b) \(\left(x-3\right)^3\)
\(=x^3-3.x^2.3+3.x.3^2-3^3\)
\(=x^3-9x^2+27x-27\)
Bài 2:
a: \(x^3+15x^2+75x+125=\left(x+5\right)^3\)
b: \(1-15y+75y^2-125y^3=\left(1-5y\right)^3\)
c: \(8x^3+4x^2y+\dfrac{3}{2}xy^2+8y^3=\left(2x+2y\right)^3\)
`a, a^2 + 10ab + 25b^2 = (a+5b)^2`
`b, 1 + 9a^2 - 6a = (3a-1)^2`
a) \(a^2+10ab+25b^2\)
\(=a^2+2\cdot5b\cdot a+\left(5b\right)^2\)
\(=\left(a+5b\right)^2\)
b) \(1+9a^2-6a\)
\(=1-6a+9a^2\)
\(=\left(1+3a\right)^2\)
a) ta có : \(-x^3+3x^2-3x+1=1-3.1^2.x+3.1.x^2-x^3=\left(1-x\right)^3\)
b) ta có : \(64-48x+12x^2-x^3=4^3-3.4^2x+3.4.x^2-x^3=\left(4-x\right)^3\)
Ta có: a/ -x3+3x2-3x+1 = -(x3-3x2+3x-1)
= -(x-1)3
b/ 64-48x+12x2-x3 = 43-3.42.x+3.a.x2-x3
= (4-x)3
HĐT số 4: \(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)
__________
\(x^3+3x^2+3x+1\)
\(=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3\)
\(=\left(x+1\right)^3\)
a) ( a + 4 ) 3 . b) ( 2 – b ) 3 .
c) ( m − 2 ) 2 − 2 3 . d) 2 a 3 − 2 b 3 .