K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

a) x 2  + 4x – 12;

b) 1 2 xy 4   –   10 x 3 y   –   2 xy 2   -   1 10 y 3   +   2 x 2   + 2 5 y ;

c) x 3  + 27.

a)Đặt A (x) = 0

hay \(3x-6=0\)

        \(3x\)      \(=6\)

          \(x\)      \(=6:3\)

          \(x\)      \(=2\)

Vậy \(x=2\) là nghiệm của A (x)

b) Đặt B (x) = 0

hay \(2x-10=0\)

       \(2x\)        \(=10\)

         \(x\)        \(=10:2\)

         \(x\)        \(=5\)

Vậy \(x=5\) là nghiệm của B (x)

c) Đặt C (x) = 0

hay  \(x^2-1=0\)

        \(x^2\)       \(=1\)

        \(x^2\)      \(=1:1\)

        \(x^2\)      \(=1\)

        \(x\)       \(=\overset{+}{-}1\)

Vậy \(x=1;x=-1\) là nghiệm của C (x)

d) Đặt D (x) = 0

hay \(\left(x-2\right).\left(x+3\right)=0\)

⇒ \(x-2=0\) hoặc \(x+3=0\)

*   \(x-2=0\)              * \(x+3=0\)

    \(x\)       \(=0+2\)           \(x\)       \(=0-3\)

    \(x\)       \(=2\)                 \(x\)        \(=-3\)

Vậy \(x=2\) hoặc \(x=-3\)  là nghiệm của D (x)

e) Đặt E (x) = 0

hay \(x^2-2x=0\)

    ⇔\(\left[{}\begin{matrix}x^2-2x\\\left(x-2\right)x\end{matrix}\right.\)

\(\left(x-2\right)x\)   

 ⇔   \(x.\left(2x-1\right)=0\)

  ⇔  \(\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)                

\(\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=2\) là nghiệm của E (x)

f) Đặt F (x) = 0

hay \(\left(x^2\right)+2=0\)

         \(x^2\)          \(=0-2\)

        \(x^2\)           \(=-2\)

        \(x\)            \(=\overset{-}{+}-2\)

Do \(\overset{+}{-}-2\) không bằng 0 nên F (x) không có nghiệm

Vậy  đa thức F (x)  không có nghiệm

g) Đặt G (x) = 0

hay  \(x^3-4x=0\)

         ⇔\(\left[{}\begin{matrix}x^3-4x\\\left(x-4\right)x^2\end{matrix}\right.\)

⇒ \(\left(x-4\right)x^2=0\)

⇔ \(x.\left(4x-1\right)=0\)

         ⇔\(\left[{}\begin{matrix}x=0\\4x-1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=\dfrac{1}{4}\) là nghiệm của G (x)

h) Đặt H (x) = 0

hay \(3-2x=0\)

            \(2x\)   \(=3+0\)

            \(2x\)   \(=3\)

              \(x\)   \(=3:2\)

              \(x\)    \(=\dfrac{3}{2}\)

Vậy \(x=\dfrac{3}{2}\) là nghiệm của H (x)

CÂU G) MIK KHÔNG BIẾT CÓ  2 NGHIỆM HAY LÀ 3 NGHIỆM NỮA

 

22 tháng 12 2021

Bài 2: 

\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

22 tháng 12 2021

Bài 2: 

⇔(x−1)(3x+1)=0

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:

\(\begin{array}{l}3.( - 1) - 6 =  - 3 - 6 =  - 9\\3.0 - 6 = 0 - 6 =  - 6\\3.1 - 6 = 3 - 6 =  - 3\\3.2 - 6 = 6 - 6 = 0\end{array}\)

Vậy 2 là nghiệm của đa thức \(3x - 6\).

b) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:

\(\begin{array}{l}{( - 1)^4} - 1 = 1 - 1 = 0\\{0^4} - 1 = 0 - 1 =  - 1\\{1^4} - 1 = 1 - 1 = 0\\{2^4} - 1 = 16 - 1 = 15\end{array}\)

Vậy 1 và – 1 là nghiệm của đa thức \({x^4} - 1\)

c) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:

\(\begin{array}{l}3.{( - 1)^2} - 4.( - 1) = 3 + 4 = 7\\{3.0^2} - 4.0 = 0 - 0 = 0\\{3.1^2} - 4.1 = 3 - 4 =  - 1\\{3.2^2} - 4.2 = 12 - 8 = 4\end{array}\)

Vậy 0 là nghiệm của đa thức \(3{x^2} - 4x\).

d) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:

\(\begin{array}{l}{( - 1)^2} + 9 = 1 + 9 = 10\\{0^2} + 9 = 0 + 9 = 9\\{1^2} + 9 = 1 + 9 = 10\\{2^2} + 9 = 4 + 9 = 13\end{array}\)

Vậy không giá trị nào là nghiệm của đa thức \({x^2} + 9\). 

a: Đặt 2x-8=0

=>2x=8

hay x=4

b: Đặt 1/2x2+3/4x=0

=>x(1/2x+3/4)=0

=>x=0 hoặc x=-3/2

4 tháng 3 2022

a, \(2x-8=0\Leftrightarrow x=4\)

b, \(\dfrac{1}{2}x\left(x+\dfrac{3}{2}\right)=0\Leftrightarrow x=0;x=-\dfrac{3}{2}\)

5 tháng 10 2021

Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)

\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)

Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)

\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)

5 tháng 10 2021

Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)

\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)

Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)

\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

14 tháng 8 2023

a) \(P\left(x\right)-x\left(x+5\right)-\left(2x-3\right)+x^2\left(3x-2\right)\)

\(P\left(x\right)=-x^2-5x-2x+3+3x^3-2x^2\)

\(P\left(x\right)=3x^3+\left(-x^2-2x^2\right)-\left(5x+2x\right)+3\)

\(P\left(x\right)=3x^3-3x^2-7x+3\)

b) \(Q\left(x\right)=2x\left(x+1\right)+3x\left(5-x\right)-7\left(x-5\right)\)

\(Q\left(x\right)=2x^2+2x+15x-3x^2-7x+35\)

\(Q\left(x\right)=-x^2+10x+35\)

a: P(x)=-x^2-5x-2x+3+3x^3-2x^2

=3x^3-3x^2-7x+3

b: Q(x)=2x^2+2x+15x-3x^2-7x+35

=-x^2+10x+35

A=5x^2+6x^2+3y+7y=11x^2+10y

B=7x^3+6x^3+6y+5y+36=13x^3+11y+36

C=-8x^5-x^5+3y^4-10y^4=-9x^5-7y^4

C=x^2-5x^2+y^2-6y^2=-4x^2-5y^2