So sánh.
a, 10 30 và 2 100
b, 333 444 và 444 333
c, 21 5 và 27 5 . 49 8
d, 3 2 n và 2 3 n n ∈ N *
e, 2017.2019 và 2018 2
f, 100 - 99 2000 và 100 + 99 0
g, 2009 10 + 2009 9 và 2010 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Vì 81 > 64 nên 81111 > 64111 và 111444 > 111333
=> 81111 . 111444 > 64111 . 111333
Vậy 333444 > 444333.
444^ 333 lớn hơn , bạn nào vào mục câu hỏi hay tick mk với , mk trả lại 10 tick vì mi có khá nhiều nick đó !!!
Ta có: 333444=333111.4=3334mũ 111=12296370321111
444333=444111.3=4443mũ 111=87528384111
Mà: 12296370321>87528384 và 111=111.
=>333444>444333.
Tk phát nhé
\(333^{444}=\left(333\times4\right)^{111}=1332^{111}\)
\(444^{333}=\left(444\times3\right)^{111}=1332^{111}\)
\(1332^{111}=1332^{111}\Rightarrow333^{444}=444^{333}\)
\(333^{444}=\left(333^4\right)^{111}\)
\(444^{333}=\left(444^3\right)^{111}\)
\(\Rightarrow333^4=111^4.3^4=111^3.111.3^4\)
\(444^3=111^3.4^3\)
\(\Rightarrow111.3^4=111.81>4^3=64\)
\(\Rightarrow333^{444}>444^{333}\)
a)\(9^{12}=\left(3^2\right)^{12}=3^{24}\)
\(27^7=\left(3^3\right)^7=3^{21}\)
\(\Rightarrow9^{12}>27^7\)
a) bạn Mạnh làm rồi và đúng
b) Ta có : \(333^{444}=\left(333^4\right)^{111}=\left[\left(3.111\right)^4\right]^{111}=\left[\left(3^4.111^4\right)\right]^{111}=\left(84.111^4\right)^{111}\)
\(444^{333}=\left(444^3\right)^{111}=\left[\left(4.111\right)^3\right]^{111}=\left[\left(4^3.111^3\right)\right]^{111}=\left(64.111^3\right)^{111}\)
Ta thấy (84.1114)111 > ( 64.1113)111 => 333444 > 444333
Vậy...
c) Vì \(17^{2002}+1>17^{2001}+1\)
\(\Rightarrow\frac{17^{2001}+1}{17^{2002}+1}< \frac{17^{2001}+1}{17^{2001}+1}\)
a) 10^30 và 2^100
Ta có: 10^30 = (10^3)^10 = 1000^10
2^100 = (2^10)^10 = 1024^10
Do 1024^10 > 1000^10 => 2^100 > 10^30
b) 333^444 và 444^333
Ta có: 333^444 = 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
c) 3^450 =(3^3)^150 =27^150
5^300=(5^2)^150=25^150
vì 27^150 >25^150 =>3^450 > 5^300
vậy 3^450 > 5^300
a) \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Mà \(1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)
b) \(3^{400}=\left(3^4\right)^{100}=81^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Mà \(81^{100}< 125^{100}\Rightarrow3^{400}< 5^{300}\)
c) \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Mà \(81^{111}.111^{444}>64^{111}.111^{333}\Rightarrow333^{444}>444^{333}\)
a, Ta có 10 30 = 10 3 10 = 1000 10
2 100 = 2 10 10 = 1024 10
Vì 1000<1024 nên 1000 10 < 1024 10
Vậy 10 30 < 2 100
b, Ta có: 333 444 = 333 4 111 = 3 . 111 4 111 = 81 . 111 4 111
444 333 = 444 3 111 = 4 . 111 3 111 = 64 . 111 3 111
Vì 81 > 64 và 111 4 > 111 3 nên 81 . 111 4 111 > 64 . 111 3 111
Vậy 333 444 > 444 333
c, Ta có: 21 5 = 3 . 7 15 = 3 15 . 7 15
27 5 . 49 8 = 3 3 5 . 7 2 8 = 3 15 . 7 16
Vì 7 15 < 7 16 nên 3 15 . 7 15 < 3 15 . 7 16
Vậy 21 5 < 27 5 . 49 8
d, Ta có: 3 2 n = 3 2 n = 9 n
2 3 n = 2 3 n = 8 n
Vì 8 < 9 nên 8 n < 9 n n ∈ N *
Vậy 3 2 n > 2 3 n
e, Ta có: 2017.2018 = (2018–1).(2018+1) = 2018.2018+2018.1–1.2018–1.1
= 2018 2 - 1
Vì 2018 2 - 1 < 2018 2 nên 2017.2018< 2018 2
f, Ta có: 100 - 99 2000 = 1 2000 = 1
100 + 99 0 = 199 0 = 1
Vậy 100 - 99 2000 = 100 + 99 0
g, Ta có: 2009 10 + 2009 9 = 2009 9 . 2009 + 1
= 2010 . 2009 9
2010 10 = 2010 . 2010 9
Vì 2009 9 < 2010 9 nên 2010 . 2009 9 < 2010 . 2010 9
Vậy 2009 10 + 2009 9 < 2010 10