Tính giá trị của biểu thức:
a ) 3 4 : 1 2 : 4 5 b ) 11 9 : 22 27 . 3 4 c ) 3 5 : 4 7 : 3 4 : 3 d ) 7 12 . 9 14 : 1 2 . 6 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)
\(A=\dfrac{5}{11}.\dfrac{5}{7}+\dfrac{5}{11}.\dfrac{2}{7}+\dfrac{6}{11}=\dfrac{5}{11}\left(\dfrac{5}{7}+\dfrac{2}{7}\right)+\dfrac{6}{11}=\dfrac{5}{11}.1+\dfrac{6}{11}=\dfrac{5}{11}+\dfrac{6}{11}=\dfrac{11}{11}=1\)
\(B=\dfrac{3}{13}.\dfrac{6}{11}+\dfrac{3}{13}.\dfrac{9}{11}-\dfrac{3}{13}.\dfrac{4}{11}=\dfrac{3}{13}\left(\dfrac{6}{11}+\dfrac{9}{11}-\dfrac{4}{11}\right)=\dfrac{3}{13}.1=\dfrac{3}{13}\)
\(C=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right)\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right).0=0\)
\(1,\\ a,=\left(\dfrac{1}{4}\right)^3\cdot32=\dfrac{1}{64}\cdot32=\dfrac{1}{2}\\ b,=\left(\dfrac{1}{8}\right)^3\cdot512=\dfrac{1}{512}\cdot512=1\\ c,=\dfrac{2^6\cdot2^{10}}{2^{20}}=\dfrac{1}{2^4}=\dfrac{1}{16}\\ d,=\dfrac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{30}}=3\\ 2,\\ a,A=\left|x-\dfrac{3}{4}\right|\ge0\\ A_{min}=0\Leftrightarrow x=\dfrac{3}{4}\\ b,B=1,5+\left|2-x\right|\ge1,5\\ A_{min}=1,5\Leftrightarrow x=2\\ c,A=\left|2x-\dfrac{1}{3}\right|+107\ge107\\ A_{min}=107\Leftrightarrow2x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{6}\)
\(d,M=5\left|1-4x\right|-1\ge-1\\ M_{min}=-1\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\\ 3,\\ a,C=-\left|x-2\right|\le0\\ C_{max}=0\Leftrightarrow x=2\\ b,D=1-\left|2x-3\right|\le1\\ D_{max}=1\Leftrightarrow x=\dfrac{3}{2}\\ c,D=-\left|x+\dfrac{5}{2}\right|\le0\\ D_{max}=0\Leftrightarrow x=-\dfrac{5}{2}\)
a, 15 . { 32 : [ 6 - 5 + 5 ( 9 : 3 ) ] + 3 } - 2018 0
= 15.{32:[1+15]+3}–1
= 15.5–1
= 74
b, 25 . { 2 7 : [ 12 - 4 + 2 2 . 16 : 2 3 ] - 2 4 }
= 25.{128:[8+4.2]–16}
= 25.24
= 600
c, 2019 . { 101 - 1000 : [ 2 2 . 2 3 + 5 6 : 5 3 - 6 2 : 11 - 2018 0 ] }
= 2019.{101–1000:[(32+125–36):11–1]}
= 2019.{101–1000:[121:11–1]}
= 2019.{101–1000:10}
= 2019.1
= 2019
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến