Cho đường tròn (O) và hai dây MA, MB vuông góc với nhau. Gọi I, K lần lượt là điểm chính giữa của các cung nhỏ MA và MB
a, Chứng minh ba điểm A, O, B thẳng hàng
b, Gọi P là giao điểm của AK và BI. Chứng minh P là tâm đưòng tròn nội tiếp tam giác MAS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a, \(\Delta MAB\) nội tiếp \(\left(O\right)\) có \(\widehat{AMB}=90^o\)
\(\Rightarrow AB\) là đường kính \(\left(O\right)\)
\(\Rightarrow AB\) đi qia tâm O của đường tròn
Vậy ba điểm A, O, B thẳng hàng
b, Vì I là điểm chính giữa cung nhỏ MA
\(\Rightarrow\widebat{IA}=\widebat{IM}\)
\(\Rightarrow\widehat{ABI}=\widehat{MBI}\)
\(\Rightarrow IB\) là tia phân giác của \(\widehat{MBA}\)
Vì K là điểm chính giữa cung nhỏ MB
\(\Rightarrow\widebat{KB}=\widebat{KM}\)
\(\Rightarrow\widehat{BAK}=\widehat{MAK}\)
\(\Rightarrow AK\) là tia phân giác của \(\widehat{MAK}\)
\(\Delta MAB\) có hai đường phân giác AK và IB cắt nhau tại P
Vậy P là đường tròn nội tiếp \(\Delta MAB\)
b, sửa đề AI giao BK = P
Góc MAI = BAI ( = 1/2 sđ cung MI ; cùng đường tròn tâm O ) => AI là tia phân giác MAI
tt BK là phân giác MBA
=> giao P .............đpcm
c, Ta có định lý : 2 x \(S\)MAB = MB x MA = ( MA + MB + AB ) x r
r là bán kính đường tròn nội típ
Thay số tính típ
( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung BC)
(góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung AC) (2)
(góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung CB) (5)
a, Chú ý: M,A,B(O) và A M B ^ = 90 0 => ĐPCM
b, Gợi ý: Chứng minh AK và BI lần lượt là phân giác trong góc A, B của tam giác MAB