Cho phương trình cos5x .cosx = cos4x. cos2x + 3cos2x + 1. Các nghiệm thuộc khoảng - π ; π của phương trình là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Phương pháp
Sử dụng tính chất hai góc bù nhau cos x = cos π − x
Giải phương trình lượng giác cơ bản
Cách giải
Vậy phương trình có 2 nghiệm thuộc − π ; π
Chọn D
Phương trình tương với:
Trên đường tròn đơn vị, các điểm nghiệm của phương trình là 4 điểm A, B, C, D như hình vẽ. Do đó trên nửa khoảng [ - π ; 0 ) , phương trình có đúng 2 nghiệm (là - π và - 2 π 3 ).
Đáp án D.
Phương trình tương với:
cos x − 2 cos 2 x − 1 − 4 cos 3 x − 3 cos x + 1 = 0 ⇔ − 4 cos 3 x − 2 cos 2 x + 4 cos x + 2 = 0 ⇔ 2 t 3 + t 2 − − 2 t − 1 = 0 t = cos x ⇔ t 2 − 1 2 t + 1 = 0 ⇔ t = 1 t = − 1 t = − 1 2
Trên đường tròn đơn vị, các điểm nghiệm của phương trình là 4 điểm A, B, C, D như hình vẽ. Do đó trên nửa khoảng − π ; 0 , phương trình có đúng 2 nghiệm (là − π và − 2 π 3 ).
Đáp án A
DK: sin x + cos x ≠ 0 ⇔ tan x ≠ − 1 ⇔ x ≠ − π 4 + k π
Khi đó P T ⇔ sin x sin 2 x + sin 2 x cos x + sin x + cos x sin x + cos x = 3 cos 2 x
⇔ sin x + cos x sin 2 x + 1 sin x + cos x = 3 cos 2 x − sin 2 x ⇔ sin 2 x − 2 sin x cos x + cos 2 x = 3 sin x + cos x cos x − sin x ⇔ sin x + cos x sin x + cos x = 3 sin x + cos x cos x − sin x ⇔ sin x + cos x = 3 cos x − sin x ⇔ 1 + 3 sin x = 3 − 1 cos x ⇔ tan x = 3 − 1 1 + 3 ⇔ x = π 12 + k π
có 2 nghiệm thuộc − π ; π
Phương trình đã cho tương đương với
2 1 - cos x - 3 cos 2 x = 1 + 1 + cos 2 x - 3 π 2 ⇔ - 2 cos x = 3 cos 2 x - sin 2 x ⇔ - cos x = 3 2 cos 2 x - 1 2 sin 2 x ⇔ cos π - x = cos 2 x + π 6 ⇔ x = 5 π 18 + k 2 π 3 x = - 7 π 6 + k 2 π
Do x ∈ 0 ; π nên x ∈ 5 π 18 ; 17 π 18 ; 5 π 6 .
Vậy tổng các nghiệm là 37 π 18
Đáp án A
Vậy các nghiệm thuộc khoảng - π ; π của phương trình là