Tìm các số nguyên n sao cho:
a) n – 1 là ước của 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
a) \(n\inƯ\left(20\right)=\left\{1;2;4;5;10;20\right\}\)
b) \(\left(n-1\right)\inƯ\left(28\right)=\left\{1;2;4;7;14;28\right\}\)
\(\Rightarrow n\in\left\{2;3;5;8;15;29\right\}\)
c) \(\left(2n+1\right)\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow2n\in\left\{0;1;2;5;8;17\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;4\right\}\)
d) \(n\left(n+2\right)=8\)
\(\Leftrightarrow n^2+2n-8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Lời giải:
Với $n$ nguyên, để $A$ nguyên thì $2n-1\vdots -n+3$
Hay $2n-1\vdots n-3$
$\Rightarrow 2(n-3)+5\vdots n-3$
$\Rightarrow 5\vdots n-3$
$\Rightarrow n-3\in\left\{\pm 1; \pm 5\right\}$
$\Rightarrow n\in\left\{4; 2; -2; 8\right\}$
a) n – 1 là ước của 15
n – 1 ∈ { 1; -1; 3; -3; 5; -5; 15; -15 }
n ∈ { 2; 0; 4; -2; 6; -4; 16; -14 }
b) Ta có: 2n – 1 = 2n – 6 + 5 = 2(n – 3) + 5 chia hết cho n – 3
Do đó: 5 chia hết cho n – 3. Nên n – 3 là ước của 5
n – 3 ∈ {1; -1; 5; -5}
n ∈ {4; 2; 8; -2}
Ta có , n - 1 \(\inƯ\left(15\right)\)
Mà Ư(15) = { -15 ; -5 ; -3 ; -1 ; 1 ; 3 ; 5 ; 15 }
\(\Rightarrow x\in\){\(-14;-4;-2;0;2;4;6;16\)}.
n-1 thuoc uoc cua 15
=>n-1 thuoc {+-1;+-3;+-5;+-15}
=>co 8 TH :n-1=1; n-1=-1; n-1=3; n-1=-3; n-1=5; n-1=-5; n-1=15; n-1=-15
=> tìm ra những giá trị của n
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
a,Ta có : \(15⋮\left(n-1\right)\)\(\Rightarrow\left(n-1\right)\inƯ\left(15\right)\)
Mà \(Ư\left(15\right)=\left\{1;3;5;15\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;3;5;15\right\}\)
+,Nếu \(n-1=1\Rightarrow n=2\)
+,Nếu \(n-1=3\Rightarrow n=4\)
+,Nếu \(n-1=5\Rightarrow n=6\)
+,Nếu \(n-1=15\Rightarrow n=16\)
Vậy \(n=\left\{2;4;6;16\right\}\)
\(a)\) \((n-1)\varepsilonƯ(15)\) Gồm các phần tử : 1; 3; 5; 15
Xét \(n-1=1\) Xét \(n-1=3\) Xét \(n-1=5\) Xét \(n-1=15\)
\(n=1+1\) \(n=3+1\) \(n=5+1\) \(n=15+1\)
\(n=2\varepsilonℤ\) \(n=4\varepsilonℤ\) \(n=6\varepsilonℤ\) \(n=16\varepsilonℤ\)
Vậy n thuộc vào tập hợp : 2; 4; 6; 16
a) Ta có : n-1\(\in\)Ư(15)={-15;-5;-3;-1;1;3;5;15}
+) n-1=-15
n=-14 (thỏa mãn)
+) n-1=-5
n=-4 (thỏa mãn)
+) n-1=-3
n=-2 (thỏa mãn)
+) n-1=-1
n=0 (thỏa mãn)
+) n-1=1
n=2 (thỏa mãn)
+) n-1=3
n=4 (thỏa mãn)
+) n-1=5
n=6 (thỏa mãn)
+) n-1=15
n=16 (thỏa mãn)
Vậy n\(\in\){-14;-4;-2;0;2;4;6;16}
b) Ta có : 2n-1\(⋮\)n-3
\(\Rightarrow\)2n-6+5\(⋮\)n-1
\(\Rightarrow\)2(n-3)+5\(⋮\)n-1
Mà 2(n-3)\(⋮\)n-3
\(\Rightarrow\)5\(⋮\)n-3
\(\Rightarrow\)n-3\(\in\)Ư(5)={-5;-1;1;5}
+) n-3=-5
n=-2 (thỏa mãn)
+) n-3=-1
n=2 (thỏa mãn)
+) n-3=1
n=4 (thỏa mãn)
+) n-3=5
n=8 (thỏa mãn)
Vậy n\(\in\){-2;2;4;8}
a) n – 1 là ước của 15
n – 1 ∈ { 1; -1; 3; -3; 5; -5; 15; -15 }
n ∈ { 2; 0; 4; -2; 6; -4; 16; -14 }