K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
24 tháng 9 2021

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

21 tháng 10 2021

a) \(x^2-xy+x-y\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

21 tháng 10 2021

b) \(x^2+5x+6\)

\(=x^2+2x+3x+6\)

\(=x\left(x+2\right)+3\left(x+2\right)\)

\(=\left(x+3\right)\left(x+2\right)\)

19 tháng 10 2023

a) Ta thấy đa thức \(f\left(x\right)=4x^2+81\) vô nghiệm (*).

 Giả sử \(f\left(x\right)\) có thể phân tích được thành nhân tử, khi đó \(f\left(x\right)=\left(ax+b\right)\left(cx+d\right)\), suy ra \(f\) có nghiệm là \(x=-\dfrac{b}{a}\) hoặc \(x=-\dfrac{d}{c}\), mâu thuẫn với (*).

 Vậy ta không thể phân tích \(f\left(x\right)\) thành nhân tử.

b) \(g\left(x\right)=x^7+x^2+1\)

\(g\left(x\right)=x^7-x+x^2+x+1\)

\(g\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(g\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(g\left(x\right)=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(g\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

 Xét \(h\left(x\right)=x^5-x^4+x^2-x+1\), nếu \(h\left(x\right)\) phân tích được thành nhân tử thì nó có nghiệm hữu tỉ. Khi đó nó có dạng \(x=\dfrac{p}{q},\left(p,q\inℤ;\left(p,q\right)=1\right),p|1,q|1\) \(\Rightarrow x=\pm1\). Ta thấy \(h\left(1\right).h\left(-1\right)\ne0\) nên 2 nghiệm này không thỏa mãn. Vậy h(x) không có nghiệm hữu tỉ \(\Rightarrow\) g(x) không thể phân tích tiếp.

19 tháng 10 2023

a)

\(4x^2+81\\=(2x)^2+2\cdot2x\cdot9+9^2-36x\\=(2x+9)^2-36x\)

Bạn xem lại đề bài nhé!

b)

\(x^7+x^2+1\\=(x^7+x^6+x^5)-x^6-x^5-x^4+(x^4+x^3+x^2)-(x^3-1)\\=x^5(x^2+x+1)-x^4(x^2+x+1)+x^2(x^2+x+1)-(x-1)(x^2+x+1)\\=(x^2+x+1)(x^4-x^4+x^2-x+1)\)

a: \(=x^2\left(x-y\right)+2014\left(x-y\right)=\left(x-y\right)\left(x^2+2014\right)\)

29 tháng 6 2017

x^2 - 7xy + 10y^2 
= (x^2 - 2xy) - (5xy - 10y^2) 
= x(x - 2y) - 5y( x - 2y) 
= (x - 5y)(x - 2y) 

29 tháng 6 2017

mik mới học lớp 7 thôi!

23 tháng 9 2021

a) \(10x^2+10xy-x-y=10x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(10x-1\right)\)

 

22 tháng 12 2019

a) Áp dụng HĐT 1 thu được ( 2 x   +   y ) 2 .

b) Áp dụng HĐT 3 với A = 2x + l; B = x - l thu được

[(2x +1) + (x -1)] [(2x +1) - (x -1)] rút gọn thành 3x(x + 2).

c) Ta có: 9 - 6x +  x 2  -  y 2 = ( 3   -   x ) 2  -  y 2  = (3 - x - y)(3 -x + y).

d) Ta có: -(x + 2) + 3( x 2  - 4) = -{x + 2) + 3(x + 2)(x - 2)

= (x + 2) [-1 + 3(x - 2)] = (x + 2)(3x - 7).

8 tháng 5 2022

a) \(A=x^2-6x+9-9y^2\)

\(=\left(x-3\right)^2-\left(3y\right)^2\)

\(=\left(x-3-3y\right)\left(x-3+3y\right)\)

b) \(B=x^3-3x^2+3x-1+2\left(x^2-1\right)\)

\(=\left(x-1\right)^3+\left(2x+2\right)\left(x-1\right)\)

\(=\left(x-1\right)\left[\left(x-1\right)^2+2x+2\right]\)

\(=\left(x-1\right).\left(x^2+3\right)\)

9 tháng 5 2022

a, \(A=\left(x-3\right)^2-9y^2=\left(x-3-3y\right)\left(x-3+3y\right)\)

b, \(B=\left(x-1\right)^3+2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left[\left(x-1\right)^2+2\left(x+1\right)\right]\)

\(=\left(x-1\right)\left(x^2-2x+1+2x+2\right)=\left(x-1\right)\left(x^2+3\right)\)