Chứng tỏ hai phân thức: ab + cx + ax + bc ay + 2 c x + 2 ax + cy và x + b 2 x + y bằng nhau với y≠−2x và a ≠ − c .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: A = ax + bx + cx + ay + by + cy + az + bz + cz
= x.(a+b+c) + y.(a+b+c) + z.(a+b+c)
= (a+b+c).(x+y+z) (1)
Lại có: a + b + c = -3 (2)
x + y + z = -6 (3)
Từ (1) ; (2) ; (3) => A = -3.(-6) = 18
Vậy A = 18
b) B = ax - bx - cx - ay + by + cy - az + bz +cz
= x.(a-b-c) - y.(a-b-c) - z.(a-b-c)
= (a-b-c).(x-y-z)
Lại có: a - b - c = 0 ; x - y - z = 2016
=> B = 0.2016 = 0
Vậy B = 0
Bài 1:
1) \(a\left(b-c\right)+b\left(c-a\right)+c\left(a-b\right)\)
\(=ab-ac+bc-ba+ca-cb\)
\(=0\)
2) \(a\left(bz-cy\right)+b\left(cx-az\right)+c\left(ay-bx\right)\)
\(=abz-acy+bcx-baz+cay-cbx\)
\(=0\)
Bài 2:
Ta có:
\(\dfrac{x^2+ax+ab+bx}{3bx-a^2-ax+3ab}\)
\(=\dfrac{\left(x^2+bx\right)+\left(ax+ab\right)}{\left(3bx-ax\right)+\left(3ab-a^2\right)}\)
\(=\dfrac{x\left(x+b\right)+a\left(x+b\right)}{x\left(3b-a\right)+a\left(3b-a\right)}\)
\(=\dfrac{\left(x+a\right)\left(x+b\right)}{\left(x+a\right)\left(3b-a\right)}\)
\(=\dfrac{x+b}{3b-a}\)
a)\(\left(x-2y-z+2t\right)\left(x-2y+z-2t\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2\)
\(=x^2-4xy+4y^2-z^2+4zt-4t^2\)
b)\(ax^2+ay^2-bx^2-by^2+b-a\)
\(=a\left(x^2+y\right)-b\left(x^2+y^2\right)-\left(a-b\right)\)
\(=\left(a-b\right)\left(x^2+y^2\right)-\left(a-b\right)\)
\(=\left(a-b\right)\left(x^2+y^2-1\right)\)
\(b,=\left(x+y\right)-x\left(x+y\right)=\left(1-x\right)\left(x+y\right)\\ c,=x\left(x-y\right)-7\left(x-y\right)=\left(x-7\right)\left(x-y\right)\\ d,=x^2\left(a+c\right)-y\left(a+c\right)+y^2\left(a+c\right)\\ =\left(x^2-y+y^2\right)\left(a+c\right)\)
Câu a sai đề, không phân tích được
a: \(xy+xz-5x-5y=\left(x+y\right)\left(z-5\right)\)
b: \(x+y-x^2-xy=\left(x+y\right)\left(1-x\right)\)
c: \(x^2-xy-7x+7y=\left(x-y\right)\left(x-7\right)\)
Bài 1 :
a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
b) \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)
c) \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
d) \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)
BÀi 2 :
a) \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)
\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)
b) \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)
c) \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)
\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)
\(=\left(b+c-a\right)\left(d-c^2\right)\)
BÀi 3 :
a) \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)
b) \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)
c) \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)
d) \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\) \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)
Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng
Nguyễn Huy Tú Lightning Farron Akai Haruma
Lời giải:
\(\left\{\begin{matrix} ax+by=c\\ bx+cy=a\\ cx+ay=b\end{matrix}\right.\Rightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(\Rightarrow x(a+b+c)+y(a+b+c)=a+b+c\)
\(\Rightarrow (x+y-1)(a+b+c)=0\)
Vì $x,y$ luôn thỏa mãn nên \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
Khi đó:
\(a^3+b^3+c^3=a^3+3ab(a+b)+b^3-3ab(a+b)+c^3\)
\(=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)
Ta có đpcm.
x,y luôn thỏa mãn thì tại sao lại suy ra a+b+c=0 .Mong thầy giải thích giúp em.
Gợi ý: ab + cx + ax + bc = (a + c)(x + b)
Và ay + 2cx + 2ax + cy = (a + c)(2x + y).