K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

\(4,=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{5-2\sqrt{6}-9}=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\\ =\dfrac{3\left(3-\sqrt{2}-\sqrt{3}\right)}{2+\sqrt{6}}=\dfrac{\left(9-3\sqrt{2}-3\sqrt{3}\right)\left(\sqrt{6}-2\right)}{2}\\ =\dfrac{9\sqrt{6}-18-6\sqrt{3}+6\sqrt{2}-9\sqrt{2}+6\sqrt{3}}{2}\\ =\dfrac{9\sqrt{6}-3\sqrt{2}-18}{2}\)

\(7,=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-2-\sqrt{3}\\ =\sqrt{3}+2+\sqrt{2}+1-2-\sqrt{3}=1+\sqrt{2}\)

\(10,\dfrac{1}{\sqrt{a}+\sqrt{a+2}}=\dfrac{\sqrt{a}-\sqrt{a+2}}{a-a-2}=\dfrac{\sqrt{a-2}-\sqrt{a}}{2}\)

Do đó \(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+...+\dfrac{1}{\sqrt{47}+\sqrt{49}}\)

\(=\dfrac{\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{49}-\sqrt{47}}{2}=\dfrac{-1+\sqrt{49}}{2}=\dfrac{7-1}{2}=3\)

24 tháng 10 2021

10, \(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+...+\dfrac{1}{\sqrt{17}+\sqrt{19}}=\dfrac{\sqrt{1}-\sqrt{3}}{\left(\sqrt{1}+\sqrt{3}\right)\left(\sqrt{1}-\sqrt{3}\right)}+\dfrac{\sqrt{3}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}+...+\dfrac{\sqrt{17}-\sqrt{19}}{\left(\sqrt{17}+\sqrt{19}\right)\left(\sqrt{17}-\sqrt{19}\right)}=\dfrac{1-\sqrt{3}+\sqrt{3}-\sqrt{5}+...+\sqrt{17}-\sqrt{19}}{-2}=-\dfrac{1-\sqrt{19}}{2}\)

NV
9 tháng 1 2022

3.

\(\left|x-2\right|=2-x\Leftrightarrow\left|2-x\right|=2-x\)

\(\Leftrightarrow2-x\ge0\Rightarrow x\le2\) (quy tắc trị tuyệt đối: \(\left|A\right|=A\Leftrightarrow A\ge0\))

6. Đề bài sai (có lẽ do in nhầm)

Tập xác định của pt này là R

8.

Đặt \(\sqrt{x^2+3x+3}=t>0\Rightarrow x^2+3x+1=t^2-2\)

\(\Rightarrow t^2+t-2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-2\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2+3x+3=1\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

9.

\(\Leftrightarrow\left|\left(x+1\right)\left(x+4\right)\right|=x+4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+4\ge0\\\left[{}\begin{matrix}x+4=0\\\left|x+1\right|=1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\\left[{}\begin{matrix}x=-4\\x=0\\x=-2\end{matrix}\right.\end{matrix}\right.\) (3 nghiệm đều thỏa mãn)

\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3+b^3\)

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Lời giải:

$(a+b)^3-3ab(a+b)$

$=a^3+3a^2b+3ab^2+b^3-(3a^2b+3ab^2)$

$=a^3+b^3$
Ta có đpcm.

5 tháng 10 2021

\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3=VT\)

5 tháng 10 2021

\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\left(đpcm\right)\)

5 tháng 10 2021

\(\left(5x+3y\right)\left(25x^2-15xy+9y^2\right)\)

\(=\left(5x+3y\right)\left[\left(5x\right)^2-5x.3y+\left(3y\right)^2\right]\)

\(=\left(5x\right)^3+\left(3y\right)^3=125x^3-27y^3\)

\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3+b^3\)

30 tháng 12 2015

x=2     và      y=3

30 tháng 12 2015

mk nhanh nhat tick mk nha