Hình trụ tròn xoay có bán kính đáy bằng r, có chiều cao bằng 2r và có trục là OO’. Chứng minh rằng mặt cầu đường kính OO’ tiếp xúc với hai mặt đáy của hình trụ và tiếp xúc với tất cả các đường sinh của mặt trụ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn tâm O có bán kính bằng r 2 2 tiếp xúc với AB’ tại H là trung điểm của AB’. Do đó mặt phẳng ( α ) song song với trục OO’ chứa tiếp tuyến của đường tròn đáy, nên ( α ) tiếp xúc với mặt trụ dọc theo một đường sinh, với mặt trụ có trục OO’ và có bán kính đáy bằng r 2 2
Đường tròn giao tuyến của mặt cầu đường kính OO’ và mặt phẳng (ABCD) có bán kính bằng . Đường tròn này có tâm là tâm của hình chữ nhật ABCD và tiếp xúc với hai cạnh AD, BC của hình chữ nhật đó.
Đáp án C
Bán kính hình cầu là R = r
Ta có V C V T = 4 3 π r 3 π r 2 .2 r = 2 3
Chọn đáp án C.
Ta có: Vì mặt cầu tiếp xúc với 2 đường tròn của hình trụ.
Nên bán kính mặt cầu bằng O O ' 2 = r
Thể tích của khối cầu là
Thể tích của khối trụ là
Khi đó V C V T = 2 3
Trên mặt đáy tâm O ta gọi H là trung điểm của bán kính OP. Qua H kẻ dây cung AB ⊥ OP và nằm trong đáy (O; r). Các đường sinh AD và BC cùng với các dây cung AB và DC (thuộc đáy (O’, r)) xác định cho ta thiết diện cần tìm là một hình chữ nhật. Gọi S là diện tích hình chữ nhật này, ta có: SABCD= AB.AD trong đó AD = 2r còn AB = 2AH. Vì H là trung điểm của OP nên ta tính được AB = r 3 . Vậy S ABCD = 2 r 2 3
Vì các mặt đáy của hình trụ vuông góc với trục OO’ tại O và O’ nên chúng tiếp xúc với mặt cầu đường kính OO’.
Gọi I là trung điểm của đoạn OO’. Ta có I là tâm của mặt cầu. Kẻ IM vuông góc với một đường sinh nào đó (M nằm trên đường sinh) ta đều có IM = r là bán kính của mặt trụ đồng thời điểm M cũng thuộc mặt cầu. Vậy mặt cầu tiếp xúc với tất cả các đường sinh của mặt trụ.