K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2016

thiếu, làm tiếp nek

=>(x-3)(x3-x2-22x+40)=0

=>x-3=0
    x3-x2-22x+40=0

=>x=3
    x=4;x=-5
    

 

16 tháng 1 2016

a. => x4-3x3-x3+3x2-22x2+66x+40x-120 =0

=>x3(x-3)-x2(x-3)-22x(x-3)+40(x-3)=0

=>(x-3)(x3-x2-22x+40

11 tháng 1 2022

\(a,x^4-4x^3-19x^2+106x-120=0\\ \Rightarrow\left(x-4\right)\left(x^3-19x+30\right)=0\Rightarrow\left(x-4\right)\left(x+5\right)\left(x^2-5x+6\right)=0\\ \Rightarrow\left(x-4\right)\left(x+5\right)\left(x-2\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=-5\\x=2\\x=3\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{-5;2;3;4\right\}\)

\(b,4x^4+12x^3+5x^2-6x-15=0\\ \Rightarrow\left(x-1\right)\left(4x^3+16x^2+21x+15\right)=0\\ \Rightarrow\left(x-1\right)\left[\left(4x^3+10x^2\right)+\left(6x^2+15x\right)+\left(6x+15\right)\right]=0\\ \Rightarrow\left(x-1\right)\left[2x^2\left(2x+5\right)+3x\left(2x+5\right)+3\left(2x+5\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(2x+5\right)\left(2x^2+3x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{2}\\2x^2+3x+3=0\left(vô.lí\right)\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{1;-\dfrac{5}{2}\right\}\)

a: =>7x=63

hay x=9

b: =>3x=-15

hay x=-5

d: =>-6x=-16

hay x=8/3

12 tháng 2 2022

a) \(7x=63\Leftrightarrow x=9\)

b) \(3x=-15\Leftrightarrow x=-5\)

c) \(2x-5=0\Leftrightarrow2x=5\Leftrightarrow x=\dfrac{5}{2}\)

d) \(-6x=-16\Leftrightarrow x=\dfrac{8}{3}\)

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

Lời giải:

a) $0,2x^2+0,4x-7=0$

$\Leftrightarrow 2x^2+4x-70=0$

$\Leftrightarrow x^2+2x-35=0$

$\Leftrightarrow (x-5)(x+7)=0$

$\Rightarrow x=5$ hoặc $x=-7$

b) 

$\frac{1}{2}x^2+11x+60,5=0$

$\Leftrightarrow x^2+22x+121=0$

$\Leftrightarrow (x+11)^2=0\Leftrightarrow x=-11$

c) 

$5x^2+\sqrt{3}-1=0$

$\Leftrightarrow 5x^2=1-\sqrt{3}< 0$ (vô lý)

Vậy  PT vô nghiệm.

16 tháng 4 2021

1) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+5y=50\\10x-6y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11y=44\\2x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)

Vậy hpt có nghiệm (x;y) = (3;4)

2)

a) 3x2 - 2x - 1 = 0

\(\Leftrightarrow3x^2-3x+x-1=0\)

\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=1\end{matrix}\right.\)

Vậy pt có nghiệm x = 1 hoặc x = 3

b) Đặt x2 = t (t \(\ge\) 0)

Pt trở thành: t2 - 20t + 4 = 0

\(\Delta\) = (-20)2 - 4.1.4 = 400 - 16 = 384

=> pt có 2 nghiệm phân biệt t1 = \(\dfrac{20+8\sqrt{6}}{2}=10+4\sqrt{6}\)

t2 = \(\dfrac{20-8\sqrt{6}}{2}=10-4\sqrt{6}\)

=> x1 = \(\sqrt{10+4\sqrt{6}}=\sqrt{\left(2+\sqrt{6}\right)^2}=2+\sqrt{6}\)

x2 = \(2-\sqrt{6}\)

23 tháng 7 2019

a)  x 4   –   5 x 2   +   4   =   0   ( 1 )

Đặt x 2   =   t, điều kiện t ≥ 0.

Khi đó (1) trở thành :  t 2   –   5 t   +   4   =   0   ( 2 )

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x 2   =   1  ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x 2   =   4  ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

b)  2 x 4   –   3 x 2   –   2   =   0 ;   ( 1 )

Đặt   x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  2 t 2   –   3 t   –   2   =   0   ( 2 )

Giải (2) : Có a = 2 ; b = -3 ; c = -2

⇒   Δ   =   ( - 3 ) 2   -   4 . 2 . ( - 2 )   =   25   >   0

⇒ Phương trình có hai nghiệm

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có giá trị t 1   =   2  thỏa mãn điều kiện.

+ Với t = 2 ⇒ x 2   =   2  ⇒ x = √2 hoặc x = -√2;

Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.

c)  3 x 4   +   10 x 2   +   3   =   0   ( 1 )

Đặt x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  3 t 2   +   10 t   +   3   =   0   ( 2 )

Giải (2) : Có a = 3; b' = 5; c = 3

⇒  Δ ’   =   5 2   –   3 . 3   =   16   >   0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

c) Ta có: \(C=4x^2+y^2-4xy+8x-4y+4\)

\(=\left(2x-y\right)^2+2\cdot\left(2x-y\right)\cdot2+2^2\)

\(=\left(2x-y+2\right)^2\)

8 tháng 8 2021

Cho mình xin đáp án câu a và b được không?

15 tháng 4 2021

a) \(\left\{{}\begin{matrix}2x+3y=-5\\6x-5y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x+9y=-15\\6x-5y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}14y=-42\\2x+3y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\2x+3.\left(-3\right)=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\2x-9=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\2x=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy phương trình có nghiệm là: \(\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

b) \(3x^2+4x=0\) 

\(\Leftrightarrow x\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{0;-\dfrac{4}{3}\right\}\)

c) Đặt:  \(x^2=t\left(t\ge0\right)\)

\(\Rightarrow\) Ta có phương trình mới:

\(t^2-3t-4=0\) 

Ta có: a - b + c = 1 + 3 - 4 = 0

\(\Rightarrow t_1=-1\left(loại\right);t_2=4\left(TM\right)\)

\(\Rightarrow x=\pm2\)

Vậy tập nghiệm của phương trình là: S = {2; -2}

15 tháng 4 2021

a, \(\left\{{}\begin{matrix}2x+3y=-5\\6x-5y=27\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+9y=-15\left(1\right)\\6x-5y=27\left(2\right)\end{matrix}\right.\)

Lấy (1) - (2) ta được : \(14y=-15-27=-42\Leftrightarrow y=-3\)

\(\Rightarrow6x-27=-15\Leftrightarrow6x=12\Leftrightarrow x=2\)

Vậy \(\left(x;y\right)=\left(2;-3\right)\)

b, \(3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow x=0;x=-\dfrac{4}{3}\)

c, \(x^4-3x^2-4=0\Leftrightarrow x^4+x^2-4x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)+x^2-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow x=\pm2;x^2+1>0\)

Vậy nghiệm của phương trình là x = -2 ; x = 2 

 

 

6 tháng 2 2018

c)   \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\)\(\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)

Đặt      \(x^2+6x+5=t\)   ta có:

                       \(t\left(t+3\right)-40=0\)

          \(\Leftrightarrow\)\(t^2+3t-40=0\)

          \(\Leftrightarrow\)\(\left(t-5\right)\left(t+8\right)=0\)

        \(\Leftrightarrow\)\(\orbr{\begin{cases}t-5=0\\t+8=0\end{cases}}\)

Thay trở lại ta có:      \(\orbr{\begin{cases}x^2+6x=0\\x^2+6x+13=0\end{cases}}\)

(*)     \(x^2+6x=0\)

 \(\Leftrightarrow\)\(x\left(x+6\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)

(*)   \(x^2+6x+13=0\)

\(\Leftrightarrow\)\(\left(x+3\right)^2+4=0\)  (vô lý)

Vậy......

18 tháng 4 2019

a)  4 x 4 + x 2 − 5 = 0

Đặt  x 2 = t (t ≥ 0). Phương trình trở thành:

4 t 2 + t − 5 = 0

Nhận thấy phương trình có dạng a + b + c = 0 nên phương trình có nghiệm

t 1 = 1 ; t 2 = ( − 5 ) / 4

Do t ≥ 0 nên t = 1 thỏa mãn điều kiện

Với t = 1, ta có:  x 2 = 1 ⇔ x = ± 1

Vậy phương trình có 2 nghiệm  x 1 = 1 ; x 2 = − 1

b)  3 x 4 + 4 x 2 + 1 = 0

Đặt x 2 = t ( t ≥ 0 ) . Phương trình trở thành:

3 t 2 + 4 t + 1 = 0

Nhận thấy phương trình có dạng a - b + c = 0 nên phương trình có nghiệm

t 1 = - 1 ; t 2 = ( - 1 ) / 3

Cả 2 nghiệm của phương trình đều không thỏa mãn điều kiện t ≥ 0

Vậy phương trình đã cho vô nghiệm.