Tìm x,y thuộc Z biết:
a, (x-3)(2y + 1) = 7
b, (2x + 1)(3y - 2) = -55
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{-3}=\dfrac{y}{5}\)⇒\(\dfrac{x}{-6}=\dfrac{y}{10}\)
\(\dfrac{y}{2}=\dfrac{z}{7}\)⇒\(\dfrac{y}{10}=\dfrac{z}{35}\)
⇒\(\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}\)
⇒\(\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{z}{35}=\dfrac{2x-3y+z}{-12-30+35}=\dfrac{42}{-7}=-6\)
⇒\(\left\{{}\begin{matrix}x=-6.-6=36\\y=-6.10=-60\\z=-6.35=-210\end{matrix}\right.\)
\(a,\dfrac{x}{-3}=\dfrac{y}{5}\Rightarrow\dfrac{x}{-6}=\dfrac{y}{10};\dfrac{y}{2}=\dfrac{z}{7}\Rightarrow\dfrac{y}{10}=\dfrac{z}{35}\\ \Rightarrow\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}=\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{2x-3y+z}{-12-30+35}=\dfrac{42}{-7}=-6\\ \Rightarrow\left\{{}\begin{matrix}x=36\\y=-60\\z=-210\end{matrix}\right.\)
\(b,6x=4y=z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{12}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{12}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y+z}{4-9+12}=\dfrac{42}{7}=6\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=18\\z=72\end{matrix}\right.\)
\(c,x=-2y\Rightarrow\dfrac{x}{-2}=y\Rightarrow\dfrac{x}{-4}=\dfrac{y}{2}\\ 7y=2z\Rightarrow\dfrac{y}{2}=\dfrac{z}{7}\\ \Rightarrow\dfrac{x}{-4}=\dfrac{y}{2}=\dfrac{z}{7}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{-4}=\dfrac{y}{2}=\dfrac{z}{7}=\dfrac{2x}{-8}=\dfrac{3y}{6}=\dfrac{2x-3y+z}{-8+6+7}=\dfrac{42}{5}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{168}{5}\\y=\dfrac{84}{5}\\z=\dfrac{294}{5}\end{matrix}\right.\)
a) ( 2 x + 1 ) ( 3 y − 2 ) = − 55
Suy ra ( 2 x + 1 ) v à ( 3 y − 2 ) ∈ Ư ( - 55 ) = 1 ; − 1 ; 5 ; − 5 ; 11 ; − 11 ; 55 ; − 55
Khi đó ta có bảng sau:
b) ( x − 3 ) ( 2 y + 1 ) = 7
Suy ra ( x − 3 ) và ( 2 y + 1 ) ∈ Ư ( 7 ) = 1 ; − 1 ; 7 ; − 7
Khi đó ta có bảng sau
c) y ( y 4 + 12 ) = − 5
Suy ra ( y 4 + 12 ) ∈ Ư ( - 5 ) = 1 ; − 1 ; 5 ; − 5
Vì y 4 ≥ 0 ⇒ y 4 + 12 ≥ 12 ⇒ không có giá trị của y thỏa mãn ycbt.
a) \(\left(x+1\right)\left(y+4\right)=7\).
-Vì \(x,y\in Z\) nên ta có thể viết:
\(\left(x+1\right)\left(y+4\right)=1.7\) hay \(\left(x+1\right)\left(y+4\right)=7.1\) hay \(\left(x+1\right)\left(y+4\right)=\left(-1\right).\left(-7\right)\) hay \(\left(x+1\right)\left(y+4\right)=\left(-7\right).\left(-1\right)\)
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=1.7\):
\(\Rightarrow x+1=1\) và \(y+4=7\)
\(\Rightarrow x=0\left(tmđk\right)\) và \(y=3\left(tmđk\right)\).
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=7.1\):
\(\Rightarrow x+1=7\) và \(y+4=1\)
\(\Rightarrow x=6\left(tmđk\right)\) và \(y=-3\left(tmđk\right)\).
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=\left(-1\right).\left(-7\right)\):
\(\Rightarrow x+1=-1\) và \(y+4=-7\)
\(\Rightarrow x=-2\left(tmđk\right)\) và \(y=-11\left(tmđk\right)\).
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=\left(-7\right).\left(-1\right)\):
\(\Rightarrow x+1=-7\) và \(y+4=-1\)
\(\Rightarrow x=-8\left(tmđk\right)\) và \(y=-5\left(tmđk\right)\).
b) \(xy+2x-3y=-1\)
\(\Rightarrow xy+2x-3y+1=0\)
\(\Rightarrow y\left(x-3\right)=-2x-1\)
\(\Rightarrow y=-\dfrac{2x+1}{x-3}=\dfrac{2\left(x-3\right)-5}{x-3}=2-\dfrac{5}{x-3}\)
-Vì \(y\in Z\) \(\Rightarrow5⋮\left(x-3\right)\).
\(\Rightarrow\left(x-3\right)\inƯ\left(5\right)\)
\(\Rightarrow x-3\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow x\in\left\{4;2;8;-2\right\}\) (đều thỏa mãn điều kiện).
+Với \(x=4\) thì \(y=\dfrac{5}{4-3}=5\) (tmđk).
+Với \(x=2\) thì \(y=\dfrac{5}{2-3}=-5\) (tmđk).
+Với \(x=8\) thì \(y=\dfrac{5}{8-3}=1\) (tmđk)
+Với \(x=-2\) thì \(y=\dfrac{5}{-2-3}=-1\) (tmđk).
a) Do (x-3).(2y+1)=7
nên (x-3),(2y+1) thuộc Ư(7)
mà Ư(7)={1;-1;7;-7}
mà 2y+1 là số nguyên lẻ
nên x-3 thuộc {1;-1;7;-7}
2y+1 thuộc {7;-7;1;-1}
nên x thuộc {4;2;10;-4}
2y thuộc {6;-8;0;-2}= y thuộc {3;-4;0;-1}
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
b. - 55 = - 5 x 11 = 5 x (-11)
Xét 4 TH:
1, 2x + 1 = -5
3y - 2 = 11
và 2, 2x + 1 = 5
3y - 2 = 11
Và ngược lại. Giải là xong bạn nhé!
a. (x - 3) . (2y + 1) = 7
(x - 3) . (2y + 1) = 1.7 = (-1).(-7)
Cứ cho x - 3 = 1 => x = 4
2y + 1 = 7 => y = 3
Tiếp x - 3 = 7 => x = 10
2y + 1 = 1 => y = 0
x-3 = -1 ...