Cho đường thẳng ∆ : x = 1 + 3 t y = - 2 t và điểm M( 3;3) .Tọa độ hình chiếu vuông góc của M trên đường thẳng là:
A. (4; -2)
B. (1; 0)
C. (2; -1)
D.(4; -5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Phương trình tọa độ giao điểm A của (d1) và (d2):
\(\left\{{}\begin{matrix}y=x-1\\y=2x-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)
Để 3 đường thẳng đồng quy \(\Rightarrow\) (d3) qua A
\(\Rightarrow2k+7=1\Rightarrow k=-3\)
2/ Gọi tọa độ điểm cố định là \(M\left(x_0;y_0\right)\)
\(\Rightarrow y_0=\left(m+4\right)x_0-m+6\) \(\forall m\)
\(\Rightarrow\left(x_0-1\right)m+4x_0-y_0+6=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_0-1=0\\4x_0-y_0+6=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=1\\y_0=10\end{matrix}\right.\) \(\Rightarrow M\left(1;10\right)\)
Để đường thẳng tạo với trục Ox 1 góc \(45^0\)
\(\Rightarrow m+4=tan45^0=1\Rightarrow m=-3\)
1: d1: y=mx-m+1
=m(x-1)+1
Điểm mà (d1) luôn đi qua có tọa độ là:
x-1=0 và y=1
=>x=1 và y=1
2: Tọa độ giao điểm của (d2) và (d3) là:
2x+3=x+1 và y=x+1
=>x=-2 và y=-1
Thay x=-2 và y=-1 vào (d1), ta được:
-2m-m+1=-1
=>-3m=-2
=>m=2/3
đt d2 : 3x - 2y = 1 => y = 3/2x - 1/2
Hai đt d1 và d2 có hệ số góc khác nhau nên chúng cắt nhau tại điểm M.Xét pt hoành độ : 3x - 2 = 3/2x - 1/2 <=> x = 1 => y = 1.
Vậy tọa độ điểm \(M\left(1;1\right)\)
Để cho d1,d2,d3 cùng đi qua 1 điểm thì d3 phải di qua M.
\(\Rightarrow\left(d_3\right)\in M\Leftrightarrow1=\left(m-2\right).1+2m-3\Leftrightarrow m=2\)
Vậy ...
Đáp án A
Điểm M( t-2; -t- 3) thuộc ∆.
Có MA2= (t-1) 2+ (-t-3) 2= 2t2+ +4t +10= 2( t2+ 2t +5)=2(t+1)2+ 8 ≥ 8 với mọi t.
Do đó MA2 M A 2 ≥ 8 8 suy ra M A ≥ 2 2
Vậy m i n ( M A ) = 3 2 khi t= -1 . Khi đó M( -3; -2)
a/ Bạn tự vẽ
b/ Phương trình hoành độ A:
\(-x+1=x+1\Rightarrow x=0\Rightarrow y=1\Rightarrow A\left(0;1\right)\)
Phương trình tọa độ B:
\(\left\{{}\begin{matrix}y=-1\\y=-x+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow B\left(2;-1\right)\)
Phương trình tọa độ C:
\(\left\{{}\begin{matrix}y=-1\\y=x+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\) \(\Rightarrow C\left(-2;-1\right)\)
Đáp án C
Gọi H là hình chiếu vuông góc của điểm M trên đường thẳng Δ. Ta có:
H ∈ Δ => H(1 + t; 2 + t; 1 + 2t)
u Δ → = (1; 1; 2), MH → = (1- t; t + 1; 2t - 3)
MH ⊥ Δ <=> u Δ → . MH → = 0 <=> 1.(t - 1) + 1.(t + 1) + 2(2t - 3) = 0
<=> 6t - 6 = 0 <=> t = 1 => H(2; 3; 3)
Đáp án B
Gọi H là hình chiếu của M trên ∆.
Ta có: H thuộc ∆ nên H( 1+ 3t ; -2t), M H → = ( - 2 + 3 t ; - 3 - 2 t )
Đường thẳng có vectơ chỉ phương là: u → = ( 3 ; - 2 ) .
Ta có M H → . u → = 0 nên 3( -2 + 3t) -2( -3-2t) = 0
13t= 0 nên t= 0.
Khi đó; H( 1; 0)