Tìm giá trị y C T cực tiểu của hàm số y = x 4 - 4 x 2 + 3
A. y C T = 1
B. y C T = 2
C. y C T = 3
D. y C T = - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left[2x^2+6mx+3\left(m+1\right)\right]\)
Hàm có cực tiểu mà ko có cực đại khi và chỉ khi \(y'=0\) có đúng 1 nghiệm đơn
TH1: \(2x^2+6mx+3\left(m+1\right)=0\) có nghiệm \(x=0\)
\(\Leftrightarrow m=-1\)
TH2: \(2x^2+6mx+3\left(m+1\right)=0\) có ít hơn 2 nghiệm
\(\Leftrightarrow\Delta'=9m^2-6\left(m+1\right)\le0\)
\(\Leftrightarrow\dfrac{1-\sqrt{7}}{3}\le m\le\dfrac{1+\sqrt{7}}{3}\)
Ta có 64 = -8a + 4b - 2c + d; -61 = 27a + 9b + 3c +d
Từ y ' = 3 a x 2 + 2 b x + c ta thu được hai phương trình 0 = 12a - 4b + c; 0 = 27a + 6b + c
Giải hệ gồm 4 phương trình trên ta thu được a = 2; b = -3; c = -36; d = 20 hay a + b + c + d = -17
Đáp án C
Tìm tất cả các giá trị nguyên của m để hàm số y=x^8+(m-2)x^5-(m^2-4)x^4+1 đạt cực tiểu tại x=0.
m= 2
nha bạn
bạn muốn tl rõ hơn thì bạn tìm trên google
\(y=x^8+\left(m-2\right)x^5-4\left(m^2-4\right)+1\)
Tập xác định \(D=ℝ\)
\(y'=8x^7+5\left(m-2\right)x^4\)
\(y''=56x^6+20\left(m-2\right)x^3\)
Để hàm số đạt cực tiểu tại \(x=0\)
\(\left\{{}\begin{matrix}y'\left(0\right)=0\\y''\left(0\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0m=0\\0m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\forall m\inℝ\\m>0\end{matrix}\right.\) \(\Leftrightarrow m>0\)
Vậy \(m>0\) hàm số trên đạt cực tiểu tại \(x=0\)
Với đề thi THPT quốc gia môn Toán, đây là một trong những câu khó. Không nhiều các bạn học sinh giải được đề toán trên. Đây là một hàm số bậc 8, hoàn toàn khác với những hàm số thông dụng được học trên lớp, để giải được bài này, các bạn cần phải sử dụng kiến thức từ định nghĩa và tính chất của cực trị hàm số bất kì. Ta có:
y" = 8x7 + 5(m - 2)x4 - 4(m2 - 4)x3 + 1
Hàm đạt cực tiểu tại x = 0 thì y"(x) = 0 và y"(x) đổi dấu từ âm sang dương khi x chạy qua điểm 0. Từ đó ta tương đương với số hạng chứa x có lũy thừa thấp nhất có hệ số khác 0 trong biểu thức y’ là lũy thừa bậc lẻ, hệ số dương.
Có nghĩa là :
–4(m2 - 4) > 0 và m - 2 = m² – 4 = 0
⇔ –2 Bài 2 - Mã đề 124 đề thi môn Toán THPT Quốc gia 2017
Dưới đây là hàm số y = f(x) được thể hiện trong bình với bảng biến thiên:
Tìm giá trị cực tiểu, cực đại của hàm số đã cho.
Bài giải:
Theo như bảng biến thiên các em học sinh nhận thấy được cực tiểu là 0 và giá trị cực đại của hàm số là 3.
Nhiều câu hỏi cho sẵn bảng biến thiên hay hình vẽ đồ thị hàm số sẽ xuất hiện trong đề thi. Chúng ta có thể vận dụng chính những dữ liệu này để có cho mình được đáp án đúng một cách nhanh chóng.
Đây nhé bro:))!
- Với \(m=0\Rightarrow y=-x^2-2\) chỉ có cực đại (thỏa mãn)
- Với \(m\ne0\) hàm chỉ có cực đại khi:
\(\left\{{}\begin{matrix}m< 0\\m\left(2m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow m< 0\)
Vậy \(m\le0\)
Đáp án D
Phương pháp:
là điểm cực tiểu của hàm số.