K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2021

undefined

22 tháng 2 2023

loading...  BC=BH+CH

       =7,5+43,2

       =50,7

CVabc= 50.7+19.5+46.8

16 tháng 12 2021

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=8\left(cm\right)\\AC=6\left(cm\right)\\AH=4,8\left(cm\right)\end{matrix}\right.\)

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

Ta có: \(AC^2=CH\cdot BC\)

\(\Leftrightarrow CH^2+16HC-225=0\)

\(\Leftrightarrow CH^2+25HC-9HC-225=0\)

\(\Leftrightarrow CH=9\left(cm\right)\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AH^2=15^2-9^2=144\)

hay AH=12cm

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20cm

Ta có: BC=BH+HC

nên BC=9+16=25cm

19 tháng 6 2023

\(BC=BH+CH=25+144=169\left(cm\right)\)

Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có đường cao AH có:

\(AH^2=HB.HC=25.144\Rightarrow AH=\sqrt{3600}=60\left(cm\right)\)

\(AB^2=BH.BC=25.169=4225\Rightarrow AB=\sqrt{4225}=65\left(cm\right)\)

\(AC^2=CH.CB=144.169=24336\Rightarrow AC=\sqrt{24336}=156\left(cm\right)\)

22 tháng 9 2017

bài làm tương tự :

dùng Pitago đảo thử từng cặp 1 

ta có: 

(b−c)2+h2

=b2+c2−2bc+h2(b−c)2+h2

=b2+c2−2bc+h2(1)

vì tam giác ABC vuông ở A có đường cao AH nên

 a2=b2+c2a2=b2+c2AB.AB

=AH.BC=2SAB.AB

=AH.BC

=2Shayb.c

=a.hb.c=a.h

⇒b2+c2−2bc+h2

=a2−2ah+h2

=(a−h)2

⇒b2+c2−2bc+h2

=a2−2ah+h2

=(a−h)2

29 tháng 9 2019

bạn sử dụng hệ thức lượng trong tg là ra