Tìm 4 số chẵn thiết lập bỡi ba chữ số sau 1,2,3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tập hợp E = {0,1,2,3,4,5}
c) Số tự nhiên có 3 chữ số có dạng
Có ba cách chọn chữ số c ( vì c ∈ {0,2,4}).
Ứng với mỗi cách chọn c , có 6 cách chọn chữ số b (vì b ∈ E)
ứng với mỗi cách chọn c, b có 5 cách chọn chữ số a (vì a ∈ E và a≠ 0)
Áp dụng quy tắc nhân ta có 3*6*5 = 90 số có 3 chữ số.
Vì vậy đáp án là B
a) Việc lập số chẵn gồm ba chữ số là thực hiện 3 hành động liên tiếp: chọn chữ số hàng đơn vị, chọn chữ số hàng chục, chọn chữ số hàng trăm.
chọn chữ số hàng đơn vị: Có 3 cách chọn (số 2, 4, 6).
chọn chữ số hàng chục: Có 7 cách chọn.
chọn chữ số hàng trăm: Có 7 cách chọn.
Theo quy tắc nhân, số số chẵn lập được là: 3.7.7=147 (số).
b) Việc lập số chẵn gồm ba chữ số đôi một khác nhau là thực hiện 3 hành động liên tiếp: chọn chữ số hàng đơn vị, chọn chữ số hàng chục, chọn chữ số hàng trăm.
chọn chữ số hàng đơn vị: Có 3 cách chọn (số 2, 4, 6).
chọn chữ số hàng chục: Có 6 cách chọn.
chọn chữ số hàng trăm: Có 5 cách chọn.
Theo quy tắc nhân, số số chẵn lập được là: 3.6.5=90 (số).
Vậy số cách để lập số có 6 chữ số khác nhau sao cho tổng ba số đầu nhỏ hơn tổng ba số cuối một đơn vị là: