K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí : Trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực , đường cao.
=> AB= AC = 20cm AD vuông góc với BC và BD = CD
Vì BD + CD = BC BD + CD = 5cm
Mà BD = CD = 5/2 = 2,5 cm
Áp dụng định lí Py ‐ ta ‐ go cho tam giác vuông ABD có :
AB 2 = BD 2 + AD 2
=> 20 2 = BD 2 + 2,5 2
=> 400 = BD 2 + 6,25
=> BD 2 = 400 ‐ 6,25 = 393,75
=> BD = căn 393 ,75

#Học tốt#

a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

20 tháng 3 2021

Mấy câu kia thì s 

 

 

 

viết thiếu đầu bài , viết sai đầu bài nx limdim

a) Xét t/giác ABD và t/giác HBD có

BAD=BHD (=90 ĐỘ)

ABD=HBD(BD là tia pg của ABC)

BD là cạnh chung

Do đó t/giác ABD= t/giác HBD (chgn)

b) Vì t/giác ABC vuông tại A

suy ra \(AB^2\)+\(AC^2\)=\(BC^2\)(ĐL PY TA GO)

           \(15^2\)+\(20^2\)=\(BC^2\)

            225+400=\(BC^2\)

           \(BC^2\)=625

           BC=25 cm

 

 

30 tháng 7 2016

A B C D 5CM 20CM

Áp dụng định lí : Ta có : BD = \(\frac{1}{3}\) AC

=> BD = \(\frac{1}{3}.20=\frac{20}{3}\)cm

 

5 tháng 3 2022

a, Xét tam giác BAC và tam giác BEA ta có 

^B _ chung 

^BAC = ^BEA = 900

Vậy tam giác BAC ~ tam giác BEA (g.g) 

b, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=25cm\)

Ta có \(S_{ABC}=\dfrac{1}{2}.AB.AC;S_{ABC}=\dfrac{1}{2}.AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{300}{25}=12cm\)

 

29 tháng 7 2016

a) Vì BD là tia pg giác của \(\widehat{ABC}\) (gt)

=>\(\frac{AB}{BC}=\frac{AD}{DC}\)

=>\(\frac{AB}{AB+AC}=\frac{AD}{AD+DC}\)

=> \(\frac{AB}{AB+BC}=\frac{AD}{AC}\)

=>\(\frac{20}{20+5}=\frac{AD}{20}\)

=>\(AD=\frac{20\cdot20}{20+5}=16\) cm

Có: AC=AD+DC 

=>DC=AC-AD=20-16=4 cm

 

29 tháng 7 2016

Câu B thì sao hả bn ?

 

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔACB có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm; CD=40/7cm

a) Ta có: \(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

Do đó: \(BC^2=AB^2+AC^2\)(=25)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

b: Xét ΔADB và ΔAEC có 

\(\widehat{A}\) chung

\(\widehat{ABD}=\widehat{ACE}\left(=\dfrac{1}{2}\widehat{ABC}\right)\)

Do đó: ΔADB\(\sim\)ΔAEC

19 tháng 8 2021

giúp mk câu d ik ạ