Tìm m ≠ 2 để hệ phương trình m 2 x + 4 m y = 1 x − 2 y = 1 2 − m có vô số nghiệm
A. m = 0; m = −2
B. m = −2
C. m = 0
D. Không có giá trị m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left\{{}\begin{matrix}mx+2y=m+2\\\left(2m-1\right)x+\left(m+1\right)y=2\left(m+1\right)\end{matrix}\right.\)
Khi m=3 thì hệ sẽ là:
3x+2y=5 và 5x+4y=8
=>x=2 và y=-1/2
b: Hệ có nghiệm duy nhất thì \(\dfrac{m}{2m-1}< >\dfrac{2}{m+1}\)
=>m^2+m<>4m-2
=>m^2-3m+2<>0
=>m<>1 và m<>2
hệ có vô số nghiệm thì \(\dfrac{m}{2m-1}=\dfrac{2}{m+1}=\dfrac{2}{2\left(m+1\right)}=\dfrac{1}{m+1}\)
=>m/2m-1=2/m+1 và 2/m+1=1/m+1(vô lý)
=>Ko có m thỏa mãn
Để hệ vô nghiệm thì m/2m-1=2/m+1<>1/m+1
=>m=2 hoặc m=1
1: mx+y=2m+2 và x+my=11
Khi m=-3 thì hệ sẽ là:
-3x+y=-6+2=-4 và x-3y=11
=>-3x+y=-4 và 3x-9y=33
=>-8y=29 và 3x-y=4
=>y=-29/8 và 3x=y+4=3/8
=>x=1/8 và y=-29/8
2: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{m}{1}< >\dfrac{1}{m}\)
=>m^2<>1
=>m<>1 và m<>-1
Để hệ vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{2m+2}{11}\)
=>(m=1 hoặc m=-1) và (11m=2m+2)
=>\(m\in\varnothing\)
Để hệ vô nghiệm thì m/1=1/m<>(2m+2)/11
=>m=1 hoặc m=-1
a Để hpt có nghiệm \(\left(x;y\right)=\left(-2;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}-2+3m=4\\-2n+3=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3m=6\\-2n=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=2\end{matrix}\right.\)
b Để hpt có vô số nghiệm \(\Leftrightarrow\dfrac{1}{n}=\dfrac{m}{1}=\dfrac{4}{-3}\) \(\left(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{n}=-\dfrac{4}{3}\\m=-\dfrac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\n=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy...
Lời giải:
a) Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x+y=1\\ x+y=1\end{matrix}\right.\Leftrightarrow x+y=1\Leftrightarrow y=1-x\)
Khi đó, hệ có nghiệm $(x,y)=(a,1-a)$ với $a$ là số thực bất kỳ.
Khi $m=-1$ thì hệ trở thành:
\(\left\{\begin{matrix} x-y=1\\ -x+y=1\end{matrix}\right.\Rightarrow (x-y)+(-x+y)=2\Leftrightarrow 0=2\) (vô lý)
Vậy HPT vô nghiệm
Khi $m=2$ thì hệ trở thành: \(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Rightarrow (x+2y)-(2x+y)=1-1=0\Leftrightarrow y-x=0\Leftrightarrow x=y\)
Thay $x=y$ vào 1 trong 2 PT của hệ thì có: $3x=3y=1\Rightarrow x=y=\frac{1}{3}$Vậy........
b)
PT $(1)\Rightarrow x=1-my$. Thay vào PT $(2)$ có:
$m(1-my)+y=1\Leftrightarrow y(1-m^2)=1-m(*)$
b.1
Để HPT có nghiệm duy nhất thì $(*)$ có nghiệm $y$ duy nhất
Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow (1-m)(1+m)\neq 0$
$\Leftrightarrow m\neq \pm 1$
b.2 Để HPT vô nghiệm thì $(*)$ vô nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m\neq 0$
$\Leftrightarrow m=-1$
b.3 Để HPT vô số nghiệm thì $(*)$ vô số nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m=0$
$\Leftrightarrow m=1$
c) Ở b.1 ta có với $m\neq \pm 1$ thì $(*)$ có nghiệm duy nhất $y=\frac{1}{m+1}$
$x=1-my=\frac{1}{m+1}$
Thay vào $x+2y=3$ thì:
$\frac{3}{m+1}=3\Leftrightarrow m=0$
`{(x-y=1),(mx+y=m-2):}`
`<=>{(x=y+1),(m(y+1)+y=m-2):}`
`<=>{(x=y+1),(my+m+y=m-2):}`
`<=>{(x=y+1),(y(m+1)=-2):}`
Hệ pt vô nghiệm `<=>m+1 ne 0<=>m ne -1`
Hệ phương trình đã cho có vô số nghiệm
⇔ m 2 1 = 4 m − 2 = 1 1 2 − m ⇔ m 2 = − 2 m = 2 − m
Với m ≠ 2 ⇒ m 2 = − 2 m − 2 m = 2 − m ⇔ m = 0 m = − 2 m = − 2 ⇔ m = − 2
Đáp án:B