Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa 2 đường thẳng AD và SC là
A. 2 a 3
B. a 3 7
C. a 21 7
D. a 3 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Ta có SAD là tam giác đều nên S H ⊥ A D
Mặt khác S A D ⊥ A B C D ⇒ S H ⊥ A B C D .
Dựng B E ⊥ H C ,
do B E ⊥ S H ⇒ B E ⊥ S H C
Do đó d = B E = 2 a 6 ; S H = a 3 ; A D = 2 a
Do S C = a 15 ⇒ H C = S C 2 − S H 2 = 2 a 3 .
Do S A H B + S C H D = 1 2 a A B + C D = S A B C D 2
suy ra V S . A B C D = 2 V S . H B C = 2 3 . S H . S B C H
= 3 2 a 3 . B E . C H 2 = 4 a 3 6 .
Đáp án C
Gọi H, M lần lượt là trung điểm của AD, BC.
AD // (SBC) Þ d(AD, SC) = d(AD,(SBC)) = d(H,(SBC))
Trong tam giác SHM kẻ HK ^ SM tại K