Hai người cùng làm một công việc trong 7 giờ 12 phút thì xong công việc,nếu người thứ nhất làm trong 4 giờ và người thứ hai làm trong 3 giờ thì được 50% công việc.Hỏi mỗi người làm một mình thì trong mấy giờ xong?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x(giờ) và y(giờ) lần lượt là thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: x>0; y>0)
Trong 1 giờ, người thứ nhất làm được:
\(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được:
\(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được:
\(\dfrac{1}{16}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\)(1)
Vì nếu người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì họ làm được 1/4 công việc nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-3}{y}=\dfrac{-1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}+\dfrac{1}{48}=\dfrac{1}{16}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\y=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\)(thỏa ĐK)
Vậy: Người thứ nhất cần 24 giờ để hoàn thành công việc khi làm một mình
Người thứ hai cần 48 giờ để hoàn thành công việc khi làm một mình
Số T 2 người làm chung là 7=4+3
họ làm đc số phần cv là 1/12*4=1/3 cồng vc
3 giờ người 2 làm đc :1/3-1/2=1/6
1 mình người 2 làm trong 3*6=18 giờ
ĐS..
Hai người cùng làm trong \(4\)giờ thì được số phần công việc là:
\(4\div12=\frac{1}{3}\)(công việc)
Đổi: \(50\%=\frac{1}{2}\).
\(3\)giờ thì người thứ hai làm một mình được số phần công việc là:
\(\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)(công việc)
Mỗi giờ người thứ hai làm một mình được số phần công việc là:
\(\frac{1}{6}\div3=\frac{1}{18}\)(công việc)
Người thứ hai làm một mình thì xong công việc trong số giờ là:
\(1\div\frac{1}{18}=18\)(giờ)
Công suất làm việc mỗi giờ của người thứ nhất, người thứ hai lần lượt là a,b (a,b>0)
Ta lập hpt:
\(\left\{{}\begin{matrix}4a+4b=1\\a+2b=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{12}\end{matrix}\right.\)
Vậy nếu làm một mình người thứ nhất cần 6 giờ để hoàn thành công việc, người thứ hai cần đến 12 giờ để hoàn thành công việc đó.
Trong 1 giờ hai người cùng làm được : 1 : 12 = \(\dfrac{1}{12}\) (cv)
Trong 4 giờ hai người cùng làm được : \(\dfrac{1}{12}\) x 4 = \(\dfrac{1}{3}\) (cv)
Trong 2 giờ người thứ hai làm được : \(\dfrac{2}{5}\) - \(\dfrac{1}{3}\) = \(\dfrac{1}{15}\) (cv)
Trong 1 giờ người thứ hai làm được : \(\dfrac{1}{15}\) : 2 = \(\dfrac{1}{30}\) (cv)
Trong 1 giờ người thứ nhất làm được : \(\dfrac{1}{12}\) - \(\dfrac{1}{30}\) = \(\dfrac{1}{20}\) (cv)
Nếu làm một mình người thứ nhất hoàn thành công việc sau:
1 : \(\dfrac{1}{20}\) = 20 ( giờ)
Nếu làm một mình thì người thứ hai hoàn thành công việc sau :
1 : \(\dfrac{1}{30}\) = 30 ( giờ)
Kết luận :..........
Đáp án B
Gọi thời gian người thứ 1 làm một mình xong công việc là x (giờ), (điều kiện x > 0.
Gọi thời gian người thứ 2 làm một mình xong việc là y (giờ), ( điều kiện y > 0).
Vậy thời gian người thứ 1 làm một mình xong công việc là 12 giờ
Thời gian người thứ 2 làm một mình xong công việc là 18 giờ.
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{1}{x}=\dfrac{5}{36}-\dfrac{1}{18}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=18\end{matrix}\right.\)