K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

Đường tròn đã cho có tâm  I    − 3 2   ;     5 2

Bán kính đường tròn  là:   R ​ =    − 3 2 2 + ​   5 2 2 + ​ 2 = 21 2

Độ dài  I M ​ =     − 2 + ​ 3 2 2 + ​   1 − 5 2 2 =    5 2    < ​​ R

Do đó, điểm  M nằm trong đường tròn. 

Qua M không kẻ được tiếp tuyến nào đến đường tròn.

ĐÁP ÁN A

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Ta có \(I\left( {2; - 3} \right)\) và \(R = \sqrt {{2^2} + {{\left( { - 3} \right)}^2} - \left( { - 12} \right)}  = 5\)

b) Ta có: \({5^2} + {1^2} - 4.5 + 6.1 - 12 = 0\). Suy ra M thuộc \(\left( C \right)\). Tiếp tuyến d của (C) tại M có vectơ pháp tuyến là \(\overrightarrow {{n_d}}  = \overrightarrow {IM}  = \left( {3;4} \right)\), đồng thời d đi qua điểm \(M\left( {5;1} \right)\).

Vậy phương trình  của d là  \(3\left( {x - 5} \right) + 4\left( {y - 1} \right) = 0 \Leftrightarrow 3x + 4y - 19 = 0\).

4 tháng 4 2021

a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)

Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)

\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2=0\)

\(\Leftrightarrow a=2b\)

\(\Rightarrow\Delta:2x+y-5=0\)

4 tháng 4 2021

b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+4\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Thay điểm \(M(4;6)\)vào phương trình đường tròn \({x^2} + {y^2} - 2x - 4y - 20 = 0\)

ta có:

\({4^2} + {6^2} - 2.4 - 4.6 - 20 = 0\)

Suy ra, điểm M thuộc đường tròn (C)

b) Đường tròn có tâm \(I(1;2)\)

Phương trình tiếp tuyến d của (C) tại \(M(4;6)\) là:

\(\begin{array}{l}\left( {1 - 4} \right)\left( {x - 4} \right) + \left( {2 - 6} \right)\left( {y - 6} \right) = 0\\ \Leftrightarrow 3x + 4y -36 = 0\end{array}\)

c) Tiếp tuyến của đường tròn song song với đường thẳng \(4x + 3y + 2022 = 0\) nên phương trình có dạng \(d:4x + 3y + c = 0\)

Ta có tâm và bán kính của đường tròn là: \(I(1;2),r = \sqrt {{1^2} + {2^2} + 20}  = 5\)

Khoảng cách từ tâm đến tiếp tuyến là bán kính nên: \(d\left( {I,d} \right) = \frac{{\left| {4.1 + 3.2 + c} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 5 \Rightarrow \left[ \begin{array}{l}c = 15\\c =  - 35\end{array} \right.\)

Vậy đường tròn (C) có hai tiếp tuyến song song với đường thẳng \(4x + 3y + 2022 = 0\) là \({d_1}:4x + 3y + 15 = 0,{d_2}:4x + 3y - 35 = 0\)

1 tháng 5 2023

Gọi \(M\left(2;y_M\right)\) là tiếp điểm của (C):

\(\Leftrightarrow2^2+y_M^2-12+2y_M=0\)

\(\Leftrightarrow y_M^2+2y_M-8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y_M=2\\y_M=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}M\left(2;2\right)\\M\left(2;-4\right)\end{matrix}\right.\)

* Với M(2;2)

Ta có: \(\overrightarrow{u}=\overrightarrow{IE}=\left(-1;3\right)\Rightarrow\overrightarrow{n}=\left(3;1\right)\)

\(\Rightarrow\left(D\right):3x+y-8=0\)

* Với M(2; -4)

Ta có: \(\overrightarrow{u}=\overrightarrow{IE}=\left(-1;-3\right)\Rightarrow\overrightarrow{n}=\left(-3;1\right)\)

\(\Rightarrow\left(D\right):-3x+y+4=0\)

NV
4 tháng 8 2021

Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)

Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn

Ta cần tìm B, C sao cho chi vi ABC lớn nhất

Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)

Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\) 

Dấu "=" xảy ra khi tam giác ABC đều

\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)

Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)

Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)

\(\Rightarrow m=-1\)

2 tháng 5 2021

Pt (C) : (x - 1)2 + (y - 2)2 = 8 

Vậy đường tròn có tâm I (1 ; 2) và bán kính bằng \(2\sqrt{2}\)

Tiếp tuyến tại M(3;4) có vecto pháp tuyến là \(\overrightarrow{IM}=\left(2;2\right)\)

hay \(\overrightarrow{n}=\left(1;1\right)\) có phương trình là 

x - 3 + y - 4 = 0 hay x + y - 7 = 0

19 tháng 10 2017

Đáp án B

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đường tròn \({(x + 1)^2} + {(y - 5)^2} = 9\) có tâm \(I\left( { - 1;5} \right)\) và \(R = 3\)

b) Đường tròn \({x^2} + {y^2}-6x - 2y-{\rm{1}}5 = 0\) có tâm \(I\left( {3;1} \right)\) và \(R = \sqrt {{3^2} + {1^2} + 15}  = 5\)