Cho số phức z thỏa mãn . Tìm giá trị nhỏ nhất và giá trị lớn nhất của modul z lần lượt là.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
z = x + y i , ( x , y ∈ ℝ ) ⇒ P = x + 2 2 + y 2 − x 2 - y - 1 2 = 4 x + 2 y + 3 z − 3 − 4 i = 5 ⇔ x - 3 2 + y - 4 2 = 5
Đặt x = 3 + 5 sin t , y = 4 + 5 cost thỏa mãn ( x − 3 ) 2 + ( y − 4 ) 2 = 5
Đáp án B
z = x + y i , ( x , y ∈ R ) ⇒ P = x + 2 2 + y 2 - x 2 - y - 1 2 = 4 x + 2 y + 3 z - 3 - 4 i = 5 ⇔ x - 3 2 + y - 4 2 = 5
Đặt x = 3 + 5 sin t , y = 4 + 5 cos t thỏa mãn x - 3 2 + y - 4 2 = 5
⇒ P = 4 5 sin t + 2 5 cos t + 23 f t = 4 5 sin t + 2 5 cos t f t 10 = 2 5 5 sin t + 5 5 cos t
Đ ặ t c o s u = 2 5 5 sin u = 5 5 ⇒ f t 10 = sin t + u ⇒ - 1 ≤ f t 10 ≤ 1 ⇒ - 10 ≤ f t ≤ 10 ⇒ 13 ≤ P ≤ 33 ⇒ w = 1258
Đáp án B.
Đặt z = x + y i x , y ∈ ℝ suy ra tập hợp các điểm M(z) = (x,y) là đường tròn (C) có tâm I(3;4) và bán kính R = 5 .
Ta có P = z + 2 2 - z - i 2 = x + 2 + y i 2 - x + y - 1 i 2 = x + 2 2 + y 2 - x 2 - y - 1 2
= x 2 + y 2 + 4 x + 4 - x 2 - y 2 + 2 y - 1 = 4 x + 2 y + 3 → ∆ : 4 x + 2 y + 3 - P = 0 .
Ta cần tìm P sao cho đường thẳng ∆ và đường tròn (C) có điểm chung ⇔ d I ; ∆ ≤ R .
⇔ 4 . 3 + 2 . 4 + 3 - P 4 2 + 2 2 ≤ 5 ⇔ 23 - P ≤ 10 ⇔ - 10 ≤ 23 - P ≤ 10 ⇔ 13 ≤ P ≤ 33 .
Do đó, m a x P = 33 m i n P = 13 → w = M + m i = 33 + 13 i ⇒ w = 1258 .
Chọn A.
Giả sử z = x + yi. Từ giả thiết:
Suy ra: ( x + 2) 2+ ( y - 1)2 = 2[(x + 1) 2 + ( y + 1) 2]
Hay x2 + (y + 3)2 = 10
Tập hợp điểm biểu diễn của z là đường tròn tâm I(0; -3) bán kính
Gọi M là điểm biểu diễn của z, ta có:
IM-IO ≤ OM ≤ IM+ IO hay