cm rằng tổng các bình phương của 4 số tự nhiên liên tiếp không thể là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số tự nhiên liên tiếp là n, n + 1, n + 2, n + 3 (n ∈ Z).
Ta có n(n + 1)(n + 2)(n + 3) + 1 = n(n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N.
Vậy n(n + 1)(n + 2)(n + 3) là số chính phương
Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\left(n\in N\right)\)
Theo đề bài, ta có :
\(n\cdot\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)+1\)
\(=\left[n\cdot\left(n+3\right)\right]\cdot\left[\left(n+1\right)\cdot\left(n+2\right)\right]\)
\(=\left[n^2+3n\right]\cdot\left[n^2+3n+2\right]+1\)( * )
Đặt \(n^2+3n=t\)thì ( * ) \(=t\cdot\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
Vậy tích của 4 số tự nhiên liên tiếp cộng cho 1 là số chính phương
Hiệu các bình phương hai số tự nhiên chẵn liên tiếp bằng 36. tìm hai số ấy?
làm tương tự
Gọi 2 số tự nhiên chẵn liên tiếp là:
2k; 2k+2 (với k thuộc N)
Hiệu hai bình phương hai số tự nhiên chẵn liên tiếp là 36, ta có:
(2k + 2)^2 - (2k)^2=36
=> 4k^2 + 8k + 4 - 4k^2 = 36
=> 8k = 32
=> k = 4
Số cần tìm là 8 và 10
a2 - (a - 1)2 = 11
\(\Rightarrow\)a . a - (a - 1) . (a - 1) = 11
\(\Rightarrow\)a . a - (a - 1) . a - (a - 1)
\(\Rightarrow\)a . a - [a . a - a - (a - 1)] = 11
\(\Rightarrow\)a . a - a . a + a + a - 1 = 11
\(\Rightarrow\)2a = 12
\(\Rightarrow\)a = 6.
Vậy số lớn là 6, số bé là 5.
gọi 4 số tn liên tiếp là A=a(a+1)(a+2)(a+3)=>A=.....
Đặt a^2+3a+1=t =>A=t^2-1 (dpcm)