Cho cấp số cộng có u 1 = - 2 và d=3. Tính tổng của 25 số hạng đầu tiên của cấp số cộng.
A. 847
B. 850
C.853
D.856
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
\(\left\{{}\begin{matrix}u_1+d=3\\u_1+9d=-15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=\dfrac{21}{4}\\d=-\dfrac{9}{4}\end{matrix}\right.\)
\(S_{20}=\dfrac{21}{4}.20+\dfrac{19.20}{2}.\left(-\dfrac{9}{4}\right)=-\dfrac{645}{2}\)
Đáp án B
Ta có: u 4 = u 1 + 3 d ⇒ u 1 = u 4 - 3 d = - 12 - 3 . 3 = - 21
Suy ra S 16 = 16 . u 1 + 16 . 15 2 d = 16 . - 21 + 16 . 15 2 . 3 = 24
Chọn D.
Phương pháp
Tổng của n số hạng đầu của CSC có số hạng đầu là u1 và công sai d:
Chọn D
Phương pháp
Tổng của n số hạng đầu của CSC có số hạng đầu là u1 và công sai d:
Cách giải:
Ta có: S 14 = n 2 u 1 + ( n - 1 ) d 2 = 280
Chọn C.
Đặt a = u1 thì u22 + u32 + u42 = (a + d)2 + (a + 2d)2 + (a + 3d2 = 3a2 – 36a + 126 = 3(a – 6)2 + 18 ≥ 18 với mọi a.
Dấu bằng xảy ra khi a – 6 = 0 hay a = 6.
Suy ra 6 = u1.
Ta có
Chọn C
- Do công sai và số hạng đầu là d = 1, u 1 = 1 nên đây là tổng của n số tự nhiên đầu tiên là:
Chọn C.
Đặt a = u1 thì u22 – 2u32 – u42 = (a + d)2 – 2(a + 2d)2 – (a + 3d)2 = -2a2 – 12a – 12d2 = -2(a + 3)2 + 6 ≤ 6 với mọi a.
Dấu bằng xảy ra khi a + 3 = 0 hay a = -3.
Suy ra u1 = -3.
Ta có .
Chọn C
Sử dụng tính chất của cấp số cộng và công thức tính tổng n số hạng đầu của cấp số cộng là
S n = n . u 1 + n ( n - 1 ) 2 . d
Đáp án B