Cho số phức z thỏa mãn |(1+ i )z + 1 -7i | = 2 . Tìm giá trị lớn nhất của |z|?
A. 4
B. 3
C. 7
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án B
Giả sử z = x + y i x , y ∈ R .
Từ giả thiết ta có z - 1 z + 3 i = 1 2
Suy ra tập hợp các điểm M(x;y) biểu diễn số phức z là đường tròn (C) có tâm I(2;3) và bán kính R = 2 5 .
Lại có P = z + i + 2 z - 4 + 7 i = M A + 2 M B với A(0;-1) và B(4;7).
Ta thấy A ∈ C , B ∈ C và A B = 4 5 = 2 R
nên AB là đường kính của đường tròn (C). Khi đó ∆ M A B vuông tại M.
Dấu “=” xảy ra khi và chỉ khi M A 1 = M B 2 ⇔ M B = 2 M A
Đáp án B
Đặt z = x + y i x , y ∈ ℝ , khi đó z − 1 z + 3 i = 1 2 ⇔ 2 z − 1 = z + 3 i
⇔ 2 x − 1 2 + y 2 = x 2 + y + 3 2 ⇔ x − 2 2 + y − 3 2 = 20 C
Suy ra tập hợp điểm biểu diễn số phức z là đường tròn (C), tâm I 2 ; 3 , bán kính R = 2 5
Ta có P = z + i + 2 z ¯ − 4 + 7 i = z + i + 2 z − 4 + 7 i , với A 0 ; − 1 , B 4 ; 7 ⇒ P = M A + 2 M B
Vậy P = M A + 2 M B ≤ 1 2 + 2 2 M A 2 + M B 2 = 5.20 = 10 → P m a x = 10
Đáp án B
Ta có
Gọi M là điểm biểu diễn số phức, tập hợp điểm biểu diễn số phức z là đường tròn có phương trình
A(0;-1), B(4;7) lần lượt biểu diễn 2 số phức
Ta có nên AB là bán kính đường tròn (C)
Dấu “=” xảy ra khi MB=2MA
Vậy maxP= 20
Chọn B.
Ta có:
Suy ra:
Xét điểm A(-2; 1) và B(4; 7) , phương trình đường thẳng AB: x - y + 3 = 0.
Gọi M(x; y) là điểm biểu diễn của số phức z trên mặt phẳng Oxy.
Khi đó ta có và ta thấy , suy ra quỹ tích M thuộc đoạn thẳng AB.
Xét điểm C( 1; -1); ta có , hình chiếu H của C trên đường thẳng AB nằm trên đoạn AB.
Do đó
Vậy
Chọn D.
Đặt w = ( 1 + i)z , suy ra
Gọi M( x; y) là điểm biểu diễn của số phức w trên mặt phẳng Oxy.
Khi đó tập hợp điểm biểu diễn của số phức w là đường tròn tâm I(-1; 7) , bán kính
Ta có
Vậy