Cho hình chóp tứ giác đều S.ABCD cạnh đáy bằng cạnh bên bằng a. Góc giữa cạnh bên và mặt phẳng đáy bằng:
A. 60 o
B. 30 o
C. 45 o
D. không phải các kết quả A, B, C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chân đường cao hình chóp đều S.ABCD trùng với tâm O của đáy ABCD. AO là hình chiếu của SA lên (ABCD)
Đáp án C
Đáp án C
Gọi O là tâm đáy ABCD. Khi đó S O ⊥ A B C D
suy ra AO là hình chiếu vuông góc của SA lên mặt phẳng đáy. Khi đó góc giữa cạnh bên SA và đáy là S A O ^
Suy ra S A O ^ = 60 °
Vậy thể tích khối chóp là:
V = 1 3 . S O . S A B C D = a 3 6 6
Đáp án B
Ta có: 2 B I 2 = a 2 ⇒ B I = a 2 ; S I = B I tan 60 0 = a 3 2
Thể tích khối chóp S.ABCD là
V = 1 3 S I . S A B C D = 1 3 a 3 2 . a 2 = a 3 6 6
Đáp án A
Gọi O là tâm hình vuông ABCD, M là trung điểm CD.
Khi đó SO là đường cao hình chóp, góc SMO là góc giữa mặt bên và mặt đáy của hình chóp.
Chọn D.
Lời giải. Xác định
Gọi M là trung điểm BC, kẻ OK ⊥ SM.
Tam giác vuông SOM
Gọi O là tâm của hình vuông ABCD. Do S.ABCD là hình chóp tứ giác đều
nên S O ⊥ A B C D
ABCD là hình vuông cạnh
Chọn D.
Đáp án D
Gọi O là tâm của hình vuông A B C D ⇒ S O ⊥ A B C D
vÌ S O ⊥ A B C D suy ra S A ; A B C D ^ = S A ; O A = S A O ^ ^ = 60 0
Tam giác S A O vuông tại O, Có tan S A O ^ = S O O A ⇒ S O = tan 60 0 . a 2 2 = a 6 2
Vậy thể tích khối chóp là V = 1 3 . S O . S A B C D = 1 3 . a 6 2 . a 2 = a 3 6 6
Gọi O là giao điểm của AC và BD.
Vì S, ABCD là hình chóp tứ giác đều nên
Hình chiếu vuông góc của điểm S lên mp(ABCD) là điểm O nên góc giữa cạnh bên và mặt phẳng đáy là góc SBO.
Ta có: B D = a 2 ; B O = 1 2 B D = a 2
Lại có: S B 2 + S D 2 = B D 2 = 2 a 2 nên tam giác SBD vuông cân tại S. ⇒ S B O ^ = 45 0
Đáp án C