Tìm x ∈ Z biết 1 - 3 x 3 = - 8
A. x=1
B. x=−1
C. x=−2
D. Không có x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x > -2 với x thuộc Z
b) x < 3 với x thuộc Z
c) |x + 1| và |x + 2| có tổng bằng 1, nên:
-Nếu |x + 1| = 0 thì |x + 2| = 1, nên x = -1
-Nếu |x + 1| = 1 thì |x + 2| = 0, nên x = -2
Vậy x = -1, x = -2
d) Với x thuộc Z thi |x - 5| và x - 8 là hai số có tính chẵn lẻ, vì thế tổng hai số này không thể bằng 6 là số chẵn. Vậy không tồn tại x thuộc Z
Bài 1 :
a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
TH1 : Thay x = 2 vào biểu thức trên ta được :
\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
TH2 : Thay x = -2 vào biểu thức trên ta được :
\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí
c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)
\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)
Vậy với x = -1 thì A = 2
d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)
\(\Rightarrow x+2< 0\)do 2 > 0
\(\Leftrightarrow x< -2\)
Vậy với A < 0 thì x < -2
e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
2.
ĐKXĐ : \(x\ne\pm2\)
a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)
Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)
Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3
c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)
<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)
d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)
e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)
Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }
Do 2y+1 là số lẻ nên 2y+1 \(\in\){1;3;-1;-3}
Ta có bảng sau:
x | -2 | -6 | 6 | 2 |
2y+1 | -3 | -1 | 1 | 3 |
y | -2 | -1 | 0 | 1 |
Phần sau làm tương tự😒💥
Ta có: \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\), quy đồng các phân số, ta được:
\(\frac{6}{6x}=\frac{x}{6x}+\frac{2xy}{6x}\)=> x + 2xy = 6 => x.(2y+1) = 6
Sau đó lập bảng....................................
Các phần sau tự làm😜😝😛
Đáp án cần chọn là: A