K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

\(ĐK:x\ne3\\ a,\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x=1+2=3\left(ktm\right)\\x=-1+2=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\\ \Leftrightarrow A=\dfrac{1}{1-3}=-\dfrac{1}{2}\\ b,A=\dfrac{x-3+3}{x-3}=1+\dfrac{3}{x-3}\in Z\\ \Leftrightarrow x-3\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{0;2;4;6\right\}\)

11 tháng 11 2021

ĐKXĐ: \(x\ne3\)

a) \(\left|x-2\right|=1\)\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

\(A=\dfrac{x}{x-3}=\dfrac{1}{1-3}=-\dfrac{1}{2}\)

b) \(A=\dfrac{x-3+3}{x-3}=1+\dfrac{3}{x-3}\in Z\)

\(\Rightarrow\left(x-3\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x\in\left\{0;2;4;6\right\}\)

 

a: TH1: x<-2

Pt sẽ là -3x-6+x+1=x+5

=>-2x-5=x+5

=>-3x=10

=>x=-10/3(nhận)

TH2: -2<=x<-1

Pt sẽ là 3x+6+x+1=x+5

=>3x+7=5

=>3x=-2

=>x=-2/3(loại)

TH3: x>=-1

Pt sẽ là 3x+6-x-1=x+5

=>2x+5=x+5

=>x=0(nhận)

b: TH1: x<-2

Pt sẽ là 2-x-x-2=4-y^2

=>-2x=4-y^2

=>2x=y^2-4

=>2x-y^2=-4

TH2: -2<=x<2

Pt sẽ là x+2+2-x=4-y^2

=>4=4-y^2

=>y=0

TH3: x>=2

Pt sẽ là x+2+x-2=4-y^2

=>2x=-y^2

28 tháng 5 2015

a)t có /x-2/ lớn hơn hoặc bằng 0

/x-4/lớn hơn hoặc bằng 0

suy ra /x-2/+/x-4/=A lớn hơn hoặc bằng 0 

vậy giá trị nhỏ nhất cua A là =0

khi đó ;/x-2/=0 và/x-4/=0

suy  ra x-2=0 vàx-4=0

vậy x=2 vàx=4

kết luận a có giá trị nhỏ nhất bằng 0 khi x=2 và x=4

b)tương tự

c)ta có /2x+4.5/ lớn hơn hoac =0

/x-2.7/lớn hơn hoac = 0 

mà /2x+4.5/+/x-2.7/=0

từ 3 dieu tren suy ra khi dó 

/2x+4.5/=0 và /x-2.7/=0

suy ra x=-2.25 và x=2.7

14 tháng 11 2016

x  chỉ là lớn hơn hoặc bằng 0

20 tháng 2 2017

|x+2|<3

\(\Rightarrow-3\le x+2\le3\)3

\(\Rightarrow-1\le x\le1\)

\(\Rightarrow x=-1;0;1\)

15 tháng 7 2023

(a) Với \(x\ge0,x\ne9\), ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3}{\sqrt{x}+3}.\)

(b) Ta có: \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

\(\Rightarrow\sqrt{x}=2+\sqrt{3}\).

Thay vào biểu thức \(A\) (thỏa mãn điều kiện), ta được: \(A=\dfrac{3}{2+\sqrt{3}+3}=\dfrac{3}{5+\sqrt{3}}\)

\(=\dfrac{3\left(5-\sqrt{3}\right)}{5^2-\left(\sqrt{3}\right)^2}=\dfrac{15-3\sqrt{3}}{22}.\)

(c) Để \(A=\dfrac{3}{5}\Rightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{3}{5}\)

\(\Rightarrow\sqrt{x}+2=5\Leftrightarrow x=9\) (không thỏa mãn).

Vậy: \(x\in\varnothing.\)

(d) Để \(A>1\Leftrightarrow A-1>0\Rightarrow\dfrac{3}{\sqrt{x}+3}-1>0\)

\(\Leftrightarrow\dfrac{1-\sqrt{x}}{\sqrt{x}+3}>0\Rightarrow1-\sqrt{x}>0\) (do \(\sqrt{x}+3>0\forall x\inĐKXĐ\))

\(\Rightarrow x< 1\). Kết hợp với điều kiện thì \(0\le x< 1.\)

(e) \(A\in Z\Rightarrow\dfrac{3}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+3=1\\\sqrt{x}+3=-1\\\sqrt{x}+3=3\\\sqrt{x}+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-2\left(VL\right)\\\sqrt{x}=-4\left(VL\right)\\\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\\\sqrt{x}=-6\left(VL\right)\end{matrix}\right.\)

Vậy: \(x=0.\)

17 tháng 2 2016

\(x\in\left\{-2;\infty\right\}\)

dốt thế

5 tháng 11 2015

a. 1</x-2/<4

=>/x-2/ thuộc {2;3}

=>x-2 thuộc {-2;2;-3;3}

=>x thuộc {0;4;-1;5}

5 tháng 11 2015

b./x+45-40/+/y+10-11/ nhỏ hơn bằng 0 

mà /x+45-40/> = 0

/y+10-11/>=0

nên /x+45-40/+/y+10-11/=0

=>x+45-40=0

=>x+5=0

=>x=-5

=>y+10-11=0

=>y+(-1)=0

=>y=1

a: Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: Thay \(x=\dfrac{1}{4}\) vào P, ta được:

\(P=\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{2}+1\right)=\dfrac{-1}{2}:\dfrac{3}{2}=-\dfrac{1}{3}\)

c: Ta có: \(P< \dfrac{1}{2}\)

\(\Leftrightarrow P-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\sqrt{x}< 3\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)