Biết lim x → 0 f x = - ∞ và lim x → 0 f x = x - 2 3 f x . Khi đó
A. I=-∞
B. I=+∞
C. I = -8
D. I = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Áp dụng quy tắc L'Hopital
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)
2.
\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\)
2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm
Vì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3 \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5\) nên không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\Rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=2\)
Do \(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)-3}{x-2}=5\Rightarrow\) chọn \(f\left(x\right)=5\left(x-2\right)+3=5x-7\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{5x-7+6}-\sqrt[3]{x+25}}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{5x-1}-3+3-\sqrt[3]{x+25}}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{5\left(x-2\right)}{\sqrt[]{5x-1}+3}-\dfrac{x-2}{9+3\sqrt[3]{x+25}+\sqrt[3]{\left(x+25\right)^2}}}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{5}{\sqrt[]{5x-1}+3}-\dfrac{1}{9+3\sqrt[3]{x+25}+\sqrt[3]{\left(x+25\right)^2}}\right)=\dfrac{5}{3+3}-\dfrac{1}{9+9+9}=\dfrac{43}{54}\)
a: \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^+}x^2-3=3^2-3=6\)
\(\lim\limits_{x\rightarrow3^-}f\left(x\right)=\lim\limits_{x\rightarrow3^-}x+3=3+3=6\)
b: Vì \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^-}f\left(x\right)=6\)
nên hàm số tồn tại lim khi x=3
=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=6\)
Do \(x-1\rightarrow0\) khi \(x\rightarrow1\) nên \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-5}{x-1}=2\) hữu hạn khi và chỉ khi \(f\left(x\right)-5=0\) có nghiệm \(x=1\)
\(\Leftrightarrow f\left(1\right)-5=0\Rightarrow f\left(1\right)=5\)
Tương tự ta có \(g\left(1\right)=1\)
Do đó: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{f\left(x\right).g\left(x\right)+4}-3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right).g\left(x\right)-5}{\left(x-1\right)\left(\sqrt{f\left(x\right).g\left(x\right)+4}+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left[f\left(x\right)-5\right].g\left(x\right)+5\left[g\left(x\right)-1\right]}{\left(x-1\right)\left(\sqrt{f\left(x\right).g\left(x\right)+4}+3\right)}\)
\(=\left(2.1+5.3\right).\dfrac{1}{\sqrt{5.1+4}+3}=\dfrac{17}{6}\)
Em làm như này được ko anh?
Tìm lim f(x) theo lim của x, rồi thế vô biểu thức, ví dụ như: \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-5}{x-1}=2\Rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\left[2\left(x-1\right)+5\right]\)
Vậy là mình có thể chuyển từ tìm lim f(x) sang lim của hàm số chứa x
a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - 1} \right) = \mathop {\lim }\limits_{x \to 1} {x^2} - \mathop {\lim }\limits_{x \to 1} 1 = {1^2} - 1 = 0\)
\(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1 = 1 + 1 = 2\)
b) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x} \right) = {1^2} + 1 = 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 + 2 = 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)
c) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - x - 2} \right) = {1^2} - 1 - 2 = - 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 - 2 = - 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)
d) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left[ {\left( {{x^2} - 1} \right)\left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^3} + {x^2} - x - 1} \right) = {1^3} + {1^2} - 1 - 1 = 0\\\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0.2 = 0\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)
e) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 1 - 1 = 0\\\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}} = \frac{0}{2} = 0\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}.\end{array}\)
\(\lim\limits_{x\rightarrow6}\dfrac{f\left(x\right)-6}{x-6}\) hữu hạn \(\Rightarrow f\left(6\right)=6\)
\(...=\lim\limits_{x\rightarrow6}\dfrac{\dfrac{f\left(x\right)-6}{\sqrt[3]{\left[f\left(x\right)+21\right]^2}+3\sqrt[3]{f\left(x\right)+21}+9}}{x-6}\)
\(=\dfrac{9}{2}.\dfrac{1}{\sqrt[3]{\left(6+21\right)^2}+3\sqrt[3]{6+21}+9}\)
Chọn D