K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 11 2021

Không gian mẫu: \(C_{25}^2\)

Trong 25 thẻ có 12 thẻ chẵn, chọn 2 thẻ từ 12 thẻ chẵn: \(C_{12}^2\) cách

Xác suất: \(P=\dfrac{C_{12}^2}{C_{25}^2}=...\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 50 thẻ từ hộp có \({C}_{50}^2 = 1225\) cách.

a) Gọi \(C\) là biến cố “2 thẻ lấy ra là số chẵn”, \(D\) là biến cố “2 thẻ lấy ra là số lẻ”

\( \Rightarrow A = C \cup D\)

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ chẵn có \({C}_{25}^2 = 300\) cách

\( \Rightarrow n\left( C \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^2 = 300\) cách

\( \Rightarrow n\left( D \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Vì \(C\) và \(D\) là hai biến cố xung khắc nên \(P\left( A \right) = P\left( C \right) + P\left( D \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)

b) Gọi \(E\) là biến cố “1 thẻ chia hết cho 4, 1 thẻ là số lẻ”

\( \Rightarrow B = C \cup E\)

Lấy ngẫu nhiên 1 thẻ trong tổng số 12 thẻ chia hết cho 4 có \({C}_{12}^1 = 12\) cách

Lấy ngẫu nhiên 1 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^1 = 25\) cách

\( \Rightarrow n\left( E \right) = 12.25 = 300 \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left(\Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Vì \(C\) và \(E\) là hai biến cố xung khắc nên \(P\left( B \right) = P\left( C \right) + P\left( E \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)

2 tháng 5 2023

\(n_{\Omega}=C_{25}^3=2300\)

A: "Những lượt lấy mà tổng các số ghi trên 3 thẻ chia hết cho 3"

Chia các thẻ thành 3 tập hợp:

M= {1;4;7;10;13;16;19;22;25} -> 8 phần tử (Chia 3 dư 1)

N= {2;5;8;11;14;17;20;23} -> 7 phần tử (Chia 3 dư 2)

P= {3;6;9;12;15;18;21;24} -> 8 phần tử (Chia hết cho 3)

TH1: Các thẻ lấy được nằm cùng tập số: \(n_{A1}=C_7^3+C_8^3.2=147\)

TH2: Các thẻ lấy được, mỗi tập số 1 thẻ: \(n_{A2}=3.7.8.8=1344\)

Em tính nA= nA1+ nA2 và tính xác suất là được ha

27 tháng 11 2021

\(\left|\Omega\right|=20.20=400\)

\(\left|\Omega_A\right|=2.20=40\)

\(\Rightarrow P\left(A\right)=\dfrac{40}{400}=\dfrac{1}{10}\)

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

- Các tấm thẻ được đánh số chẵn là: thẻ số 2; thẻ số 8; thẻ số 32.

Xác suất để biến cố \(A\) xảy ra là \(\frac{3}{6} = \frac{1}{2}\)

- Các tấm thẻ được đánh số nguyên tố là: thẻ số 2; thẻ số 3; thẻ số 5; thể số 13.

Xác suất để biến cố \(B\) xảy ra là \(\frac{4}{6} = \frac{2}{3}\)

- Không có tấm thẻ nào được đánh số chính phương.

Do đó, xác suất để biến cố \(C\) xảy ra bằng 0.

6 tháng 11 2019

Đáp án A

Từ số 1 đến 17 có 8 số chẵn. Do đó xác suất cần tìm là  C 8 4 C 17 4 = 1 34

27 tháng 6 2017

Chọn đáp án D

Số phần tử không gian mẫu là: n(Ω)=20

Gọi A là biến cố lấy được một tẩm thẻ ghi số lẻ và chia hết cho 3 =>A={3;9;15}

Do đó n(A)=3

Xác suất cần tìm là: P ( A ) = 3 20

16 tháng 1 2019

Chọn C

25 tháng 7 2017

Đáp án D

Các trường hợp thẻ lấy thỏa mãn đề bài là 3, 9, 15

Suy ra xác suất lấy được thẻ đó là  3 20 = 0 , 15 .