tính giá trị của a,b,c biết rằng:
\(\frac{a}{18}=\frac{20}{b}=\frac{c}{21}=\frac{4}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ mik dùng cácg rút nha!! ta rút b
=> Có biểu thức (2 x b : 3) + b + (5 x b : 4) = 21
nhấn máy tính CASIO => b =7,2
a = (2 x b :3) = (2 x 7,2 :3) =4,8
c= (5 x b :4) = (5 x 7,2 :4)=9
=> 3a-b+c=3 x 4,8 - 7,2 + 9=16,2
Bn k cho mik nha!!!
\(\frac{a}{18}=\frac{4}{3}\Rightarrow a.3=4.18\Rightarrow a=\frac{4.18}{3}=4.6=24\)
\(\frac{20}{b}=\frac{4}{3}\Rightarrow b.4=20.3\Rightarrow b=\frac{20.3}{4}=5.3=15\)
\(\frac{c}{21}=\frac{4}{3}\Rightarrow c.3=21.4\Rightarrow c=\frac{21.4}{3}=7.4=28\)
Vậy a = 24;b = 15; c = 28.
\(\frac{a}{18}=\frac{4}{3}\Rightarrow3.a=4.18\Rightarrow a=24\)
\(\frac{24}{18}=\frac{20}{b}\Rightarrow24.b=20.18\Rightarrow b=15\)
\(\frac{20}{15}=\frac{c}{21}\Rightarrow15.c=20.21\Rightarrow c=28\)
Vậy a=24; b=15;b=28
a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)
\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)
b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)
Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b},\)ta có :
\(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=1+\frac{c}{a-b}.\frac{b^2-bc+ac-a^2}{ab}\)
\(=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)
Tương tự : \(M.\frac{a}{b-c}=1+\frac{2a^3}{abc},M.\frac{b}{c-a}=1+\frac{2b^3}{abc}.\)
Vậy \(A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=9\)
\(a\left(a+b+c\right)=-12\)
\(b\left(a+b+c\right)=18\)
\(c\left(a+b+c\right)=30\)
\(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)
\(\left(a+b+c\right)\left(a+b+c\right)=36\)
\(\left(a+b+c\right)^2=\left(\pm6\right)^2\)
\(a+b+c=\pm6\)
Th1:
\(a+b+c=6\)
\(\left[\begin{array}{nghiempt}a\times6=-12\\b\times6=18\\c\times6=30\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=-\frac{12}{6}\\b=\frac{18}{6}\\c=\frac{30}{6}\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=-2\\b=3\\c=5\end{array}\right.\)
Th2:
\(a+b+c=-6\)
\(\left[\begin{array}{nghiempt}a\times\left(-6\right)=-12\\b\times\left(-6\right)=18\\c\times\left(-6\right)=30\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=\frac{-12}{-6}\\b=\frac{18}{-6}\\c=\frac{30}{-6}\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=2\\b=-3\\c=-5\end{array}\right.\)
Ta có: \(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
\(\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b+c}{8+12+15}=\frac{21}{35}=\frac{3}{5}\)
\(a=\frac{3}{5}.8=\frac{24}{5}\)
\(b=\frac{3}{5}.12=\frac{36}{5}\)
\(c=\frac{3}{5}.15=9\)
\(\Rightarrow3a-b+c=3.\frac{24}{5}-\frac{36}{5}+9=\frac{81}{5}\)
Vậy 3a - b + c = 81/5
\(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5}\)
=> \(\frac{a}{8}=\frac{b}{12};\frac{b}{12}=\frac{c}{15}\)
=>\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)và a + b + c =21
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b+c}{8+12+15}=\frac{21}{35}=\frac{3}{5}\)
=> a = \(\frac{24}{5}\)
b = \(\frac{36}{5}\)
c = 9
=> 3a - b + c = 16 , 2
Vậy 3a - b + c = 16 , 2
a=24 ; b=15 ; c=28
TÍCH NHANH NHA !