Cho a, b, c thỏa mãn - 1 + a - b + c > 0 8 + 4 a + 2 b + c < 0 thì số giao điểm của đồ thị hàm số y = x 3 + a x 2 + b x + c với trục Ox là:
A. 1
B. 2
C. 3
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT bị ngược dấu, BĐT đúng phải là:
\(\dfrac{a}{ac+4}+\dfrac{b}{ab+4}+\dfrac{c}{bc+4}\le\dfrac{a^2+b^2+c^2}{16}\)
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Ta có:
0 < a < 1 ⇒ a - 1 < 0 ⇒ a(a - 1) < 0 ⇒ a2 - a < 0 (1)
Tương tự:
0 < b < 1 ⇒ b2 - b < 0 (2)
0 < c < 1 ⇒ c2 - c < 0 (3)
Cộng (1); (2); (3) vế theo vế ta được:
a2 + b2 + c2 - a - b - c < 0
⇔ a2 + b2 + c2 < a + b + c
⇔ a2+ b2 + c2 < 2 (do a + b + c = 2)
Đáp án C.
lim x → - ∞ y = - ∞ ( 1 ) f ( - 1 ) = - 1 + a 2 - b + c > 0 ( 2 ) f ( 2 ) = 8 + 4 a 2 + 2 a + c < 0 ( 3 ) lim x → - ∞ y = + ∞ ( 4 )
Từ (1) và (2) ⇒ Phương trình f (x) = 0 có ít nhất một nghiệm trên - ∞ ; - 1 .
Từ (2) và (3) ⇒ Phương trình f (x) = 0 có ít nhất một nghiệm trên - 1 ; 2 .
Từ (3) và (4) ⇒ Phương trình f (x) = 0 có ít nhất một nghiệm trên 2 ; + ∞ .
Do f (x) =0 là phương trình bậc 3 ⇒ Có nhiều nhất 3 nghiệm
⇒ Đường thẳng cắt trục Ox tại 3 điểm phân biệt.