Số cách sắp xếp 5 học sinh thành một hàng dọc là
A. 1
B. 4 !
C. 5
D. 5 !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra, ta thấy cách sắp xếp chính là việc nam nữ đứng xen kẽ nhau.
Như vậy sẽ có hai trường hợp, hoặc là bạn nam đứng đầu hàng hoặc là bạn nữ đứng đầu hàng.
Và 5 bạn nam thay đổi vị trí cho nhau tương ứng với 5! cách.
Tương tự với 5 bạn nữ thay đổi vị trí tương ứng với 5! cách.
Vậy số cách sắp xếp cần tìm 2.(5!)2.
Chọn B.
Đáp án C
Chọn An là người đứng đầu, 4 bạn còn lại xếp vào 4 vị trí còn lại nên có 4 ! = 24 cách
Đáp án C
Chọn An là người đứng đầu
4 bạn còn lại xếp vào 4 vị trí còn lại nên có 4!=24 cách
- Mỗi cách xếp có 4+5=9 học sinh thành hàng dọc là một hoán vị của 9 học sinh đó. Vậy có tất cả 9! Cách xếp. Chọn đáp án là C
Nhận xét: học sinh có thể nhầm lẫn xếp nam và nữ riêng nên cho kết quả 4!*5! (phương án A); hoặc vừa xếp nam và nữ riêng và sử dụng quy tắc cộng để cho kết quả 4!+5! (phương án B); hoặc chọn 4 học sinh nam trong p học sinh và 5 học sinh nữ trong 9 học sinh để cho kết quả A94.A95 ( phương án D)
Chọn ra 5 học sinh trong 11 học sinh không quan tâm đến thứ tự.
=> Tổ hợp chập 5 của 11 phân tử: \(C_{11}^5\)
- Nếu đánh số theo hàng dọc từ 1 đến 9 thì cần xếp 5 học nữ vào 5 vị trí lẻ nên có 5!cách xếp; và xếp 4 học sinh nam vào 4 vị trí chẵn nên có 4!cách xếp. Theo quy tắc nhân ta có, ta có 4!*5! Cách xếp 9 học sinh thành hàng dọc xen kẽ nam nữ.
Chọn A
D
Mỗi cách sắp xếp 5 học sinh là một hoán vị của 5 phần tử.
Số các hoán vị là: 5!