Cho hàm số bậc bốn y = f x có đồ thị như hình vẽ. Số giá trị nguyên của tham số m để phương trình f x + m = m có 4 nghiệm phân biệt là:
A. 2
B. Vô số
C. 1
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.
Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5
Chọn D.
Số nghiệm của phương trình f(x) = m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.
Dựa vào đồ thị, điều kiện để phương trình có 4 nghiệm phân biệt là -4 < m < 0.
Vậy có 1 giá trị m thỏa mãn yêu cầu bài toán.
Chọn: C