K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

Đáp án B 

29 tháng 11 2017

Đạo hàm  y’ = 3x2+6x+m. Ta có  ∆ ' y ' = 9 - 3 m

Hàm số có cực đại và cực tiểu khi  ∆ ' y ' = 9 - 3 m > 0 ⇔ m < 3  

Ta có 

Gọi x1; x2 là hoành độ của hai điểm cực trị khi đó 

Theo định lí Viet, ta có 

Hai điểm cực trị nằm về hai phía trục hoành khi y1.y2<0

Chọn C.

8 tháng 7 2018

Chọn đáp án C.

Ta có y ' = 3 x 2 - 2 ( m + 1 ) x + m 2 - 2

trước tiên ta phải có phương trình y ' = 0  có hai nghiệm phân biệt

 

Điều kiện hai điểm cực trị của đồ thị hàm số nằm cùng về một phía đối với trục hoành là y x 1 . y x 2 > 0

⇔ y = 0  có đúng một nghiệm thực.

Thử trực tiếp các giá trị của m{−1,0,1,2} nhận các giá trị m{−1,0,2} để y = 0 có đúng một nghiệm thực.

28 tháng 11 2019

Đáp án C

TXĐ: D = ℝ .

Ta có  y ' = x 2 − 2 m − 1 x + m − 1 .

Để đồ thị hàm số có hai điểm cực trị nằm về hai phía của trục tung thì

m − 1 2 − m − 1 > 0 m − 1 > 0 2 m − 1 > 0 ⇔ m > 2.

Vậy m>2 thỏa mãn điều kiện đề bài.

10 tháng 3 2017

20 tháng 4 2017

 

31 tháng 3 2018

10 tháng 9 2017

Đáp án C