K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

12 tháng 4 2017

Chọn đáp án A

11 tháng 7 2018

Chọn A.

Phương pháp:

1 tháng 12 2019

Chọn A

27 tháng 12 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong tam giác ABC ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Hiển nhiên D ∈ (DBC) ∩ (DMN)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (DBC) ∩ (DMN) = Dx ⇒ (DBC) ∩ (DMN) = Dx và DC // BC // MN

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

13 tháng 4 2019

Đáp án D

Xét (DMN) và (DBC) có:

D là điểm chung

BC // MN ⇒ B C ⫽ D M N

Giao tuyến của 2 mặt phẳng là đường thẳng d song song với AB

⇒ d // (ABC)

26 tháng 5 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (α) ∩ (ABC) = MN và MN // AB

Ta có N ∈ (BCD) và Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên ⇒ (α) ∩ (BCD) = NP và NP // CD

Ta có P ∈ (ABD)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên ⇒ (α) ∩ (ABD) = PQ và PQ // AB

Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên ⇒ (α) ∩ (ACD) = MQ và MQ // CD

Do đó MN // PQ và NP // MQ, Vậy tứ giác MNPQ là hình bình hành.

b) Ta có: MP ∩ NQ = O. Gọi I là trung điểm của CD.

Trong tam giác ACD có : MQ // CD ⇒ AI cắt MQ tại trung điểm E của MQ.

Trong tam giác ACD có : NP // CD ⇒ BI cắt NP tại trung điểm F của NP.

Vì MNPQ là hình bình hành nên ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

EF // MN ⇒ EF // AB

Trong ΔABI ta có EF // AB suy ra : IO cắt AB tại trung điểm J

⇒ I, O, J thẳng hàng

⇒ O ∈ IJ cố định.

 

Vì M di động trên đoạn AC nên Ochạy trong đoạn IJ .

Vậy tập hợp các điểm O là đoạn IJ.

1 tháng 8 2018

Đáp án D

Ta chia khối đa diện thành các khối tứ diện

Thể tích khối tứ diện đều đã cho là  V o = 2 12