Tính đạo hàm cấp 2 của hàm số y = 10 x .
A. y ' ' = 10 x
B. y ' ' = 10 x ln 10 2
C. y ' ' = 10 x ln 2 10
D. y ' ' = 10 x ln 2 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(y'=4\cdot3x^2-3\cdot2x+2=12x^2-6x+2\)
b: \(y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}=\dfrac{x-1-x-1}{\left(x-1\right)^2}=\dfrac{-2}{\left(x-1\right)^2}\)
c: \(y'=-2\cdot\left(\sqrt{x}\cdot x\right)'\)
\(=-2\cdot\left(\dfrac{x+x}{2\sqrt{x}}\right)=-2\cdot\dfrac{2x}{2\sqrt{x}}=-2\sqrt{x}\)
d: \(y'=\left(3sinx+4cosx-tanx\right)\)'
\(=3cosx-4sinx+\dfrac{1}{cos^2x}\)
e: \(y'=\left(4^x+2e^x\right)'\)
\(=4^x\cdot ln4+2\cdot e^x\)
f: \(y'=\left(x\cdot lnx\right)'=lnx+1\)
\(a,y'=8x^3-9x^2+10x\\ \Rightarrow y''=24x^2-18x+10\\ b,y'=\dfrac{2}{\left(3-x\right)^2}\\ \Rightarrow y''=\dfrac{4}{\left(3-x\right)^3}\)
\(c,y'=2cos2xcosx-sin2xsinx\\ \Rightarrow y''=-5sin\left(2x\right)cos\left(x\right)-4cos\left(2x\right)sin\left(x\right)\\ d,y'=-2e^{-2x+3}\\ \Rightarrow y''=4e^{-2x+3}\)
\(a,y'=\left[\left(2x-3\right)^{10}\right]'\\ =10\left(2x-3\right)^9\left(2x-3\right)'\\ =20\left(2x-3\right)^9\\ b,y'=\left(\sqrt{1-x^2}\right)'\\ =\dfrac{\left(1-x^2\right)'}{2\sqrt{1-x^2}}\\ =-\dfrac{2x}{2\sqrt{1-x^2}}\\ =-\dfrac{x}{\sqrt{1-x^2}}\)
\(y'=\dfrac{1}{4}\left(x^2-4x+10\right)^{-\dfrac{3}{4}}\left(x^2-4x+10\right)'\)
\(=\dfrac{x-2}{2\sqrt[4]{\left(x^2-4x+10\right)^3}}\)
a: y=ln(x+1)
=>\(y'=\dfrac{1}{x+1}\)
=>\(y''=\dfrac{1'\left(x+1\right)-1\left(x+1\right)'}{\left(x+1\right)^2}=\dfrac{-1}{\left(x+1\right)^2}\)
b: y=tan 2x
=>\(y'=\dfrac{2}{cos^22x}\)
=>\(y''=\left(\dfrac{2}{cos^22x}\right)'=\dfrac{-2\cdot cos^22x'}{cos^42x}=\dfrac{-2\cdot2\cdot cos2x\left(cos2x\right)'}{cos^42x}\)
\(=\dfrac{4\cdot2\cdot sin2x}{cos^32x}=\dfrac{8\cdot sin2x}{cos^32x}\)
a: \(y=x\cdot e^{2x}\)
=>\(y'=\left(x\cdot e^{2x}\right)'\)
\(=x\cdot\left(e^{2x}\right)'+x'\cdot\left(e^{2x}\right)\)
\(=e^{2x}+2\cdot x\cdot e^{2x}\)
\(y''=\left(e^{2x}+2\cdot x\cdot e^{2x}\right)'\)
\(=\left(e^{2x}\right)'+\left(2\cdot x\cdot e^{2x}\right)'\)
\(=4\cdot e^{2x}+4\cdot x\cdot e^{2x}\)
b: \(y=ln\left(2x+3\right)\)
=>\(y'=\dfrac{\left(2x+3\right)'}{\left(2x+3\right)}=\dfrac{2}{2x+3}\)
=>\(y''=\left(\dfrac{2}{2x+3}\right)'=\dfrac{2\left(2x+3\right)'-2'\left(2x+3\right)}{\left(2x+3\right)^2}\)
\(=\dfrac{4}{\left(2x+3\right)^2}\)
`a)TXĐ:R\\{1;1/3}`
`y'=[-4(6x-4)]/[(3x^2-4x+1)^5]`
`b)TXĐ:R`
`y'=2x. 3^[x^2-1] ln 3-e^[-x+1]`
`c)TXĐ: (4;+oo)`
`y'=[2x-4]/[x^2-4x]+2/[(2x-1).ln 3]`
`d)TXĐ:(0;+oo)`
`y'=ln x+2/[(x+1)^2].2^[[x-1]/[x+1]].ln 2`
`e)TXĐ:(-oo;-1)uu(1;+oo)`
`y'=-7x^[-8]-[2x]/[x^2-1]`
Lời giải:
a.
$y'=-4(3x^2-4x+1)^{-5}(3x^2-4x+1)'$
$=-4(3x^2-4x+1)^{-5}(6x-4)$
$=-8(3x-2)(3x^2-4x+1)^{-5}$
b.
$y'=(3^{x^2-1})'+(e^{-x+1})'$
$=(x^2-1)'3^{x^2-1}\ln 3 + (-x+1)'e^{-x+1}$
$=2x.3^{x^2-1}.\ln 3 -e^{-x+1}$
c.
$y'=\frac{(x^2-4x)'}{x^2-4x}+\frac{(2x-1)'}{(2x-1)\ln 3}$
$=\frac{2x-4}{x^2-4x}+\frac{2}{(2x-1)\ln 3}$
d.
\(y'=(x\ln x)'+(2^{\frac{x-1}{x+1}})'=x(\ln x)'+x'\ln x+(\frac{x-1}{x+1})'.2^{\frac{x-1}{x+1}}\ln 2\)
\(=x.\frac{1}{x}+\ln x+\frac{2}{(x+1)^2}.2^{\frac{x-1}{x+1}}\ln 2\\ =1+\ln x+\frac{2^{\frac{2x}{x+1}}\ln 2}{(x+1)^2}\)
e.
\(y'=-7x^{-8}-\frac{(x^2-1)'}{x^2-1}=-7x^{-8}-\frac{2x}{x^2-1}\)
g: \(y=ln\left(x^2+x+1\right)\)
=>\(y'=\dfrac{\left(x^2+x+1\right)'}{x^2+x+1}=\dfrac{2x+1}{x^2+x+1}\)
l: \(y=\dfrac{lnx}{x+1}\)
=>\(y'=\dfrac{\left(lnx\right)'\cdot\left(x+1\right)-\left(x+1\right)'\left(lnx\right)}{\left(x+1\right)^2}\)
=>\(y'=\dfrac{\dfrac{1}{x}\left(x+1\right)-lnx}{\left(x+1\right)^2}\)
\(\Leftrightarrow y'=\dfrac{\dfrac{\left(x+1\right)}{x}-lnx}{\left(x+1\right)^2}\)
Đáp án là C