Cho f n = n 2 + n + 1 2 + 1 ∀ n ∈ ℕ ∗ . Đặt u n = f 1 . f 3 ... f 2 n − 1 f 2 . f 4 ... f 2 n .
Tìm số n nguyên dương nhỏ nhất sao cho u n thỏa mãn điều kiện log 2 u n + u n < − 10239 1024 .
A. n = 23
B. n = 29
C. n = 21
D. n = 33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Cho m=1 ta có
f ( n + 1 ) = f ( n ) + f ( 1 ) + n ⇔ f ( n + 1 ) = f ( n ) + n + 1.
Khi đó
f ( 2 ) + f ( 3 ) + ... + f ( k ) = f ( 1 ) + 2 + f ( 2 ) + 3 + ... + f ( k − 1 ) + k + 1
⇔ f ( 2 ) + f ( 3 ) + ... + f ( k − 1 ) + f ( k ) = f ( 1 ) + f ( 2 ) + ... + f ( k − 1 ) + ( 1 + 2 + ... + k )
⇔ f ( k ) = f ( 1 ) + ( 1 + 2 + ... + k ) = 1 + k ( k + 1 ) 2 .
Vậy hàm cần tìm là
f ( x ) = 1 + x ( x + 1 ) 2 ⇒ f ( 96 ) = 1 + 96.97 2 = 4657 f ( 69 ) = 1 + 69.70 2 = 2416
Vậy
T = log 4657 − 2416 − 241 2 = log 1000 = 3.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Chọn D
Đạo hàm hai vế f(x)
Số hạng tổng quát thứ k + 1 trong khai triển thành đa thức của
Đáp án A
= > U n = ( 1 2 + 1 ) ( 2 2 + 1 ) . ( 3 2 + 1 ) ( 4 2 + 1 ) ... [ ( 2 n − 1 ) 2 + 1 ] [ ( 2 n ) 2 + 1 ] ( 2 2 + 1 ) ( 3 2 + 1 ) . ( 4 2 + 1 ) ( 5 2 + 1 ) ... [( 2 n ) 2 + 1 ] [ ( 2 n + 1 ) 2 + 1 ] = > U n = 2 ( 2 n + 1 ) 2 + 1