K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

⇔ -7 x 2  + 4 = 5x + 5 –  x 2  + x – 1

⇔ -7 x 2  +  x 2  – 5x – x = 5 – 1 – 4

⇔ -6 x 2  – 6x = 0

⇔ - x 2  – x = 0

⇔ x(x + 1) = 0

⇔ x = 0 hoặc x + 1 = 0

⇔ x = 0 hoặc x = -1 (loại)

Vậy phương trình có nghiệm x = 0.

9 tháng 1 2021

Câu 1 : 

a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)

\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)

\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)

Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)

tương tự 

16 tháng 5 2021

\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)

\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)

\(< =>95-24x+40=6-4x-15x+5\)

\(< =>-24x+135=-19x+11\)

\(< =>5x=135-11=124\)

\(< =>x=\frac{124}{5}\)

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

11 tháng 8 2021

1/ \(2\left(x-5\right)=\left(-x-5\right)\)

\(\Leftrightarrow2x-10=-x-5\)

\(\Leftrightarrow3x=5\)

\(\Leftrightarrow x=\dfrac{5}{3}\)

Vậy: \(S=\left\{\dfrac{5}{3}\right\}\)

==========

2/ \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(\Leftrightarrow2x+6-3x+3=2\)

\(\Leftrightarrow-x=-7\)

\(\Leftrightarrow x=7\)

Vậy: \(S=\left\{7\right\}\)

==========

3/ \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(\Leftrightarrow4x-20-3x+1=x-19\)

\(\Leftrightarrow0x=0\)

Vậy: \(S=\left\{x|x\text{ ∈ }R\right\}\) 

===========

4/ \(7-\left(x-2\right)=5\left(2-3x\right)\)

\(\Leftrightarrow7-x+2=10-15x\)

\(\Leftrightarrow14x=1\)

\(\Leftrightarrow x=\dfrac{1}{14}\)

Vậy: \(S=\left\{\dfrac{1}{14}\right\}\)

==========

5/ \(2x-\left(5-3x\right)=7x+1\)

\(\Leftrightarrow2x-5+3x=7x+1\)

\(\Leftrightarrow-2x=6\)

\(\Leftrightarrow x=-3\)

Vậy: \(S=\left\{-3\right\}\)

[---]

Chúc bạn học tốt.

11 tháng 8 2021

1. \(2\left(x-5\right)=-x-5\)

\(\Leftrightarrow3x=5\)

\(\Leftrightarrow x=\dfrac{5}{3}\)

Vậy \(S=\left\{\dfrac{5}{3}\right\}\)

2. \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(\Leftrightarrow2x+6-3x+3=2\)

\(\Leftrightarrow x=7\)

Vậy \(S=\left\{7\right\}\)

3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(\Leftrightarrow4x-20-3x+1-x+19=0\)

\(\Leftrightarrow0x=0\)

Vậy \(S=\left\{x\in R\right\}\)

4. \(7-\left(x-2\right)=5\left(2-3x\right)\)

\(\Leftrightarrow7-x+2-10+15x=0\)

\(\Leftrightarrow14x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{14}\)

Vậy \(S=\left\{\dfrac{1}{14}\right\}\)

4. \(2x-\left(5-3x\right)=7x+1\)

\(\Leftrightarrow2x-5+3x-7x-1=0\)

\(\Leftrightarrow-2x-6=0\)

\(\Leftrightarrow x=-3\)

Vậy \(S=\left\{-3\right\}\)

a: \(\Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\)

=>(4x+14+3x+9)(4x+14-3x-9)=0

=>(7x+23)(x+5)=0

=>x=-23/7 hoặc x=-5

\(a,\\ \Leftrightarrow7x^2+58x+115=0\\ \Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+5=0\\7x+23=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-\dfrac{23}{7}\end{matrix}\right.\)

\(b,\\ \Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]=0\\ \Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=0\\ \LeftrightarrowĐặt.x^2+6x+5=a\\ \Leftrightarrow a=a\left(a+3\right)=10\\ \Leftrightarrow a^2+3a-10=0\\ \Leftrightarrow\left(a+5\right)\left(a-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=-5\\a=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2+6x+5=-5\\x^2+6x+5=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+6x+10=0\\x^2+6x+3=0\end{matrix}\right.\\ \left(Vô.n_o\Delta=36-40=-4< 0\right)\) 

\(\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{6}\\x=-3-\sqrt{6}\end{matrix}\right.\)

7 tháng 11 2019

Ta có: 5( x - 3 ) - 4 = 2( x - 1 ) + 7

⇔ 5x - 15 - 4 = 2x - 2 + 7

⇔ 5x - 2x = 15 + 4 - 2 + 7

⇔ 3x = 24 ⇔ x = 8

Vậy phương trình đã cho có nghiệm là x = 8.

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

1.

$(x-2)(x-5)=(x-3)(x-4)$

$\Leftrightarrow x^2-7x+10=x^2-7x+12$
$\Leftrightarrow 10=12$ (vô lý)

Vậy pt vô nghiệm.

2.

$(x-7)(x+7)+x^2-2=2(x^2+5)$

$\Leftrightarrow x^2-49+x^2-2=2x^2+10$
$\Leftrightarrow 2x^2-51=2x^2+10$

$\Leftrightarrow -51=10$ (vô lý)

Vậy pt vô nghiệm.

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

3.

$(x-1)^2+(x+3)^2=2(x-2)(x+2)$
$\Leftrightarrow (x^2-2x+1)+(x^2+6x+9)=2(x^2-4)$
$\Leftrightarrow 2x^2+4x+10=2x^2-8$

$\Leftrightarrow 4x+10=-8$

$\Leftrightarrow 4x=-18$

$\Leftrightarrow x=-4,5$

4.

$(x+1)^2=(x+3)(x-2)$

$\Leftrightarrow x^2+2x+1=x^2+x-6$

$\Leftrightarrow x=-7$ 

 

12 tháng 10 2021

\(\left\{{}\begin{matrix}\left(x-5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy-2x-5y+10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+7y=12\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+21y=36\\3x-y=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}22y=20\\x+7y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{62}{11}\\y=\dfrac{10}{11}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) đẻ được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc => khả năng bị bỏ qua bài cao.

a: =>3x=3

=>x=1

b: =>12x-2(5x-1)=3(8-3x)

=>12x-10x+2=24-9x

=>2x+2=24-9x

=>11x=22

=>x=2

c: =>2x-3(2x+1)=x-6x

=>-5x=2x-6x-3=-4x-3

=>-x=-3

=>x=3

d: =>2x-5=0 hoặc x+3=0

=>x=5/2 hoặc x=-3

e: =>x+2=0

=>x=-2

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

23 tháng 11 2023

1: \(2^x=64\)

=>\(x=log_264=6\)

2: \(2^x\cdot3^x\cdot5^x=7\)

=>\(\left(2\cdot3\cdot5\right)^x=7\)

=>\(30^x=7\)

=>\(x=log_{30}7\)

3: \(4^x+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)

=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)

=>\(2^x-1=0\)

=>\(2^x=1\)

=>x=0

4: \(9^x-4\cdot3^x+3=0\)

=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)

Đặt \(a=3^x\left(a>0\right)\)

Phương trình sẽ trở thành:

\(a^2-4a+3=0\)

=>(a-1)(a-3)=0

=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)

=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)

=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)

=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)

=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)

=>\(3^{x+1}-2=0\)

=>\(3^{x+1}=2\)

=>\(x+1=log_32\)

=>\(x=-1+log_32\)

6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\) 

=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)

Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)

Phương trình sẽ trở thành:

\(\dfrac{1}{b}+b=2\)

=>\(b^2+1=2b\)

=>\(b^2-2b+1=0\)

=>(b-1)2=0

=>b-1=0

=>b=1

=>\(\left(2+\sqrt{3}\right)^x=1\)

=>x=0

7: ĐKXĐ: \(x^2+3x>0\)

=>x(x+3)>0

=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)

=>\(x^2+3x=4^1=4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)