Chứng tỏ rằng nếu 3 số a, a + n, a + 2n đều là số nguyên tố lớn hơn 3 thì n chia hết cho 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2n luôn là số chẵn nên nếu n là số lẻ thì trong hai số a + n và a + 2n sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy n phải là số chẵn (tức là n chia hết cho 2).
Lý luận tương tự, n phải chia hết cho 3, vì nếu n chia 3 dư 1 hoặc 2 thì 2n chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +n, a +2n khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + n hoặc a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + n và a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => n chia hết cho 6.
Vì 2n luôn là số chẵn nên nếu n là số lẻ thì trong hai số a + n và a + 2n sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy n phải là số chẵn (tức là n chia hết cho 2).
Lý luận tương tự, n phải chia hết cho 3, vì nếu n chia 3 dư 1 hoặc 2 thì 2n chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +n, a +2n khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + n hoặc a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + n và a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => n chia hết cho 6.
SU DUNG NGUYEN LI DIRICHLET DE TIM CHIA HET CHO 3 VI TATCA LA SNT >3
NEN 3 SO KO CHIA HET CHO 3 NÊN CO DANG 3K+1 VÀ 3K+2
3 SỐ LÀ SNT>3 NEN 3 SO LA SÔ LE NÊN N LA CHAN NEN N:2
Chỳ ý rằng , các số nguyên tố (trừ số 2) đều là các số lẽ
- Nếu n lẽ thì n + a là số chẵn là một hợp số trỏi với giả thiết n + a là số nguyên tố. vậy n là số chẳn
- Ta dặt n = 2k, k ∈ N *
+ Nếu k chia hết cho 3 thì n chia hết cho 6
+ Nếu k = 3p + 1 , p ∈ N * thì 3 số theo thứ tự bằng a, a + 6p + 2,
a + 12p + 4
+ Do a là số lẽ nên nếu a chia cho 3 dư 1 thì a + 6p + 2 chia hết cho 3,
Nếu a chia 3 dư 2 thì a + 12p + 4 chia hết cho 3
+ Nếu k = 3p + 2 p ∈ N * thì 3 số theo thứ tự bằng
a, a + 6p +4, a + 12p +8
với a chia cho 3 dư 1 thì a + 12p +8 chia hết cho 3
với a chia cho 3 dư 2 thì a + 6p +4 chia hếtt cho 3
Vậy để 3 số a, a + n, a + 2n đều là số nguyên tố thì n phải chia hếtt cho 6.