Cho đường tròn (O; R) đường kính AB. Gọi I là trung điểm của OA, dây CD vuông góc với AB tại I. Lấy K tùy ý trên cung BC nhỏ, AK cắt CD tại H
a, Chứng minh đường tròn ngoại tiếp ∆BHK đi qua I
b, Chứng minh AH.AK có giá trị không phụ thuộc vị trí điểm K
c, Kẻ DN ^ CB, DM ^ AC. Chứng minh MN, AB và CD đồng quy
d, Cho BC = 25cm. Hãy tính diện tích xung qanh hình trụ tạo thành khi cho tứ giác MCND quay quanh MD
a, HS tự làm
b, Ta có DAHI đồng dạng với DABK (g.g)
=>AH.AK = AI.AB = R 2
c, Chứng minh được I là trung điểm của CD
Từ MCND là hình chữ nhật suy ra MN và CD cắt nhau tại trung điểm của mỗi đường => ĐPCM
d, Chứng minh được I O C ^ = 60 0 => ∆ACO đều nên A C D ^ = 30 0
Chứng minh được DCBD đều nên CD = CB => CD = 25cm
Áp dụng tỉ số lượng giác trong ∆CDM ( M ^ = 90 0 ) ta tính được: MD = 12,5cm và MC = 21,7 cm
Từ đó tính được diện tích xung quanh hình trụ tạo thành khi cho tứ giác MCND quay quanh MD là: S x q = 2 r πh = 542 , 5 πcm 2