Chứng minh rằng :
ab chia hết cho 17 khi và chỉ khi ( 3a + 2b ) chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh 3a+2b chia hết cho 17 khi và chỉ khi 10a+b chia hết cho 17
Giải:Ta có:2(10a+b)-(3a+2b)
=20a + 2b - 3a - 2b = 17a chia hết cho 17
Vì 3a+2b chia hết cho 17 nên 2(10a+b) chia hết cho 17
Mà UCLN(2,17)=1 nên 10a+b chia hết cho 17
Vậy......................................
\(9a+7b⋮17\Rightarrow3\left(9a+7b\right)=27a+21b⋮17\)
\(17a+17b⋮17\)
\(\Rightarrow27a+21b-17a-17b=10a+4b=2\left(5a+2b\right)⋮17\)
\(\Rightarrow5a+2b⋮17\)
Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
\(\text{Vì 17⋮}17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
\(\text{Vì }3a+2b⋮17\Rightarrow2.\left(10a+b\right)\)
\(\text{Mà (2,10)=1}\Rightarrow10a+b⋮17\)
=> 3a + 2b chia hết cho 17 khi 10a + b chia hết cho 17 (a,b ∈ Z ) (đpcm )
nhỡ 2.(10a+b) và (3a+2b) không chia hết cho 17 nhưng khi 2.(10a+b)-(3a-2b) lại chia hết cho 17 thì sao
taco;17achia het cho17
suy ra 17a+3a+2b chia het cho17
suy ra20a+2bchia het cho17
rút gọn cho 2
suyra 10a+b chia hết cho 17
vậy số dư là 0
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
Ta có: ab = 10a +b
Đặt 10a+ b là c , 3a +2b là d
Xét biểu thức: 2c - d = 2(10a +b) - (3a + 2b)
= 20a + 2b -3a -2b
= 17a Chia hết cho 17
= > 2(10a +b) - (3a + 2b) chia hết cho 17
mà 3a +2b chia hết cho 17 => 2(10a +b) chia hết cho 17
mà (2,17) = 1 => 10a + b chia hết cho 17
=> ab chia hết cho 17
Vậy ab chia hết cho 17 khi và chỉ khi ( 3a + 2b ) chia hết cho 17
Nhớ tick đúng cho mình nhé