K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2023
A. MN + NP = 2MP   Vì tam giác MNP là tam giác đều, nên độ dài các cạnh MN, NP và MP sẽ bằng nhau. Do đó, khẳng định A là sai vì MN + NP sẽ bằng 2 lần độ dài MP

hc tốt nha 

20 tháng 10 2023

câuA ha
Vì tam giác MNP là tam giác đều, nên độ dài các cạnh MN, NP và MP sẽ bằng nhau. Do đó, khẳng định A là đúng vì MN bằng MP.

Ta có: \(MP^2+NP^2=6^2+8^2=100\)

\(MN^2=10^2=100\)

Do đó: \(MP^2+NP^2=MN^2\)(=100)

Xét ΔMNP có \(MP^2+NP^2=MN^2\)(cmt)

nên ΔMNP vuông tại N(Định lí Pytago đảo)

28 tháng 3 2021

Ko còn cái j ngoài cm hả có vuông góc ko?????

 

DD
23 tháng 12 2021

Gọi độ dài các cạnh MN, NP, MP lần lượt là \(a,b,c\left(cm\right);a,b,c>0\).

Vì độ dài các cạnh MN, NP, MP lần lượt tỉ lệ với \(3,4,5\)nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\).

Vì chu vi tam giác MNP là \(60cm\)nên \(a+b+c=60\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)

\(\Leftrightarrow\hept{\begin{cases}a=5.3=15\\b=5.4=20\\c=5.5=25\end{cases}}\)

7 tháng 1 2022

MN = DE; MP= DF; NP = EF.

29 tháng 9 2019

có nhiều câu hỏi tương tự mà bạn

3 tháng 3 2018

ta có tam giác MNP có MN=MP = 8 cm => tam giác cân có đỉnh tại M

-> đường cao mh vuông góc với NP là đường trung tuyến -> HN= HP = 10/2 = 5 cm

xét tam giác MNH và tam giác MPH ta có

góc MHN = góc MHP ( = 90 độ )

HN=HP = 5cm 

góc MNH = góc MPH ( tam giác MNP cân tại M )

=> tam giác MNH = tam giác MPH ( g.c.g )

áp dụng định lí pytago ta có mh = \(\sqrt{8^2-5^2}\)

-> mh = \(\sqrt{39}\)

tiếp theo là cách giải của toán 9 

ta có MHP vuông tại H và có HI là đường cao 

-> HM*HP = PM*IH

-> IH= ( HM*HP)/PM= \(\frac{\left(\sqrt{39}+5\right)}{8}\)

vì tam giác MHN = tam giác MHP 

-> HI = KI = \(\frac{\left(\sqrt{39}+5\right)}{8}\)

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm 

a: Xét ΔNME vuông tại M và ΔNHE vuông tại H có

NE chung

\(\widehat{MNE}=\widehat{HNE}\)

Do đó: ΔNME=ΔNHE

b: \(MP=\sqrt{17^2-15^2}=8\left(cm\right)\)