Đa giác đều n đỉnh và nội tiếp đường tròn bán kính R có diện tích là
A. 1 2 n R 2 sin 360 n °
B. 1 2 n R 2 cos 360 n °
C. n R 2 sin 360 n °
D. n R 2 cos 360 n °
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(r^2+p^2+4Rr=\left(\dfrac{S}{p}\right)^2+p^2+\dfrac{abc}{S}.\dfrac{S}{p}\)
\(=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}+p^2+\dfrac{abc}{p}\)
\(=\dfrac{p^3+\left(ab+bc+ac\right)p-p^2\left(a+b+c\right)-abc+p^3+abc}{p}\)
\(=ab+bc+ca\)
Do đó:
\(\dfrac{ab+bc+ca}{4R^2}=\dfrac{r^2+p^2+4Rr}{4R^2}\)
\(\Leftrightarrow sinAsinB+sinBsinC+sinCsinA=\dfrac{r^2+p^2+4Rr}{4R^2}\)\(\left(đpcm\right)\)
bạn giải thích chi tiết đoạn này hộ mình được ko ạ
p^3+(ab+bc+ac)p−p^2(a+b+c)−abc+p^3+abc/p
=ab+bc+ca
ĐÁP ÁN B
Giả sử A, B, C là ba đỉnh liên tiếp của đa giác đều.
Tam giác ABC cân tại B có góc ở đỉnh là α, góc ở đáy là 90 ° − α 2 .
Tam giác ABC nội tiếp đường tròn bán kính R nên a = 2 R sin 90 ° − α 2 = 2 R cos α 2
Gọi O là tâm đa giác, giả sử A, B là hai đỉnh kề nhau của đa giác
Ta có A O B ^ = 360 n ° . Diện tích đa giác đều bằng.
S = n S O A B = n . 1 2 O A . O B . sin A O B ^ = 1 2 n R 2 . sin 360 n °
ĐÁP ÁN A