Biểu thức (cota + tana)2 bằng
A.
B. cot2a + tan2a.
C .
D. cot2a.tan2a + 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sin^2a+\cos^2a=1\Rightarrow\cos a=\frac{\sqrt{21}}{5}\)
Ta có : \(\frac{\cot a-\tan a}{\cot a+\tan a}=\frac{\frac{\cos a}{\sin a}-\frac{\sin a}{\cos a}}{\frac{\cos a}{\sin a}+\frac{\sin a}{\cos a}}\\ =\frac{\frac{\frac{\sqrt{21}}{5}}{\frac{2}{5}}-\frac{\frac{2}{5}}{\frac{\sqrt{21}}{5}}}{\frac{\frac{\sqrt{21}}{5}}{\frac{2}{5}}+\frac{\frac{2}{5}}{\frac{\sqrt{21}}{5}}}=\frac{17}{25}=0,68\)
\(A=\dfrac{cota-tana}{tana+2\cdot cota}\)
\(=\dfrac{\dfrac{cosa}{sina}-\dfrac{sina}{cosa}}{\dfrac{sina}{cosa}+2\cdot\dfrac{cosa}{sina}}\)
\(=\dfrac{cos^2a-sin^2a}{sina\cdot cosa}:\dfrac{sin^2a+2\cdot cos^2a}{sina\cdot cosa}\)
\(=\dfrac{cos^2a-sin^2a}{sin^2a+2\cdot cos^2a}\)
\(=\dfrac{1-2\cdot sin^2a}{sin^2a+2\left(1-sin^2a\right)}\)
\(=\dfrac{1-2\cdot sin^2a}{-sin^2a+2}\)
\(=\dfrac{1-2\cdot\left(\dfrac{1}{3}\right)^2}{-\left(\dfrac{1}{3}\right)^2+2}=\dfrac{1-\dfrac{2}{9}}{-\dfrac{1}{9}+2}=\dfrac{7}{9}:\dfrac{17}{9}=\dfrac{7}{17}\)
\(tan3a-tan2a-tana=\frac{sin3a}{cos3a}-\frac{sin2a}{cos2a}-\frac{sina}{cosa}=\frac{sin3a.cos2a-sin2a.cos3a}{cos3a.cos2a}-\frac{sina}{cosa}\)
\(=\frac{sin\left(3a-2a\right)}{cos3a.cos2a}-\frac{sina}{cosa}=\frac{sina}{cos3a.cos2a}-\frac{sina}{cosa}=tana\left(\frac{cosa}{cos3a.cos2a}-1\right)\)
\(=tana\left(\frac{cos\left(3a-2a\right)-cos3a.cos2a}{cos3a.cos2a}\right)=tana\left(\frac{cos3a.cos2a+sin3a.sin2a-cos3a.cos2a}{cos3a.cos2a}\right)\)
\(=tana\left(\frac{sin3a.sin2a}{cos3a.cos2a}\right)=tana.tan2a.tan3a\)
Chọn C.
Ta có: cota + tana) 2 = cot2a + 2.cota.tana + tan2a
= (cot2a + 1) + (tan2a + 1)