K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

Chọn B

Đặt t = x 2 , t ≥ 0 .

Phương trình trở thành: t 2 − 2 m + 1 t + 2 m + 1 = 0          (2)

Phương trình (1) có bốn nghiệm phân biệt khi và chỉ khi PT (2) có hai nghiệm dương phân biệt t2 > t1 >  0 .

Δ ' > 0 P > 0 S > 0

⇔ m + 1 2 − 2 m + 1 > 0 2 m + 1 > 0 2 m + 1 > 0 ⇔ − 1 2 < m ≠ 0

Khi đó PT (2) có bốn nghiệm là: − t 2 ; − t 1 ; t 1 ; t 2  

Bốn nghiệm này lập thành cấp số cộng khi : 

− t 2 + t 1 = − 2 t 1 − t 1 + t 2 = 2 t 1 ⇔ t 2 = 3 t 1 ⇔ t 2 = 9 t 1

Theo định lý viet thì : t 1 + t 2 = 2 m + 1 t 1 t 2 = 2 m + 1

  ⇒ t 1 + 9 t 1 = 2 m + 1   t 1 9 t 1 = 2 m + 1 ⇔ 10 t 1 = 2 m + 1       ( * ) 9 t 1 2 = 2 m + 1         ( * * ) .

Từ (*) suy ra: 5 t 1 =    m + ​ 1 ⇔ m = 5 t 1 − 1 thay vào (**) ta được:

9 t 1 2 = 2 ( 5 t 1 − 1 ) ​ + 1    ⇔ 9 t 1 2 − 10. t 1 + ​ 1 = 0   ⇔ t 1 =    1 9 ⇒ m =    − 4 9 t 1 =    1 ⇒ m =    4

Vậy m = 4 hoặc m = − 4 9  là những giá trị cần tìm

16 tháng 4 2017

Chọn B.

Đặt t = x2, t 0.

Phương trình trở thành: t2 – 2(m + 1)t + 2m + 1 = 0  (2)

Phương trình (1) có bốn nghiệm phân biệt khi và chỉ khi PT (2) có hai nghiệm dương phân biệt t2 > t1 > 0.

Khi đó PT(2) có bốn nghiệm là: 

Bốn nghiệm này lập thành cấp số cộng khi :

Theo định lý viet thì : 

Vậy m = 4 hoặc  là những giá trị cần tìm.

8 tháng 12 2017

Chọn C.

Đặt t = x2.

Khi đó ta có phương trình: t2 – 2(m + 1)t + 2m + 1 = 0

Phương trình đã cho có nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt 

+ Với điều kiện trên thì  phương trình (*) có hai nghiệm dương phân biệt là t1; t2.

Khi đó phương trình đã cho có bốn nghiệm phân biệt là .

Bốn nghiệm này lập thành một cấp số cộng khi

Theo định lý Vi-ét ta có: t1 + t2 = 2(m + 1) ; t1.t2 = 2m + 1.

Suy ra ta có hệ phương trình 

Chỉ có m = 4  thỏa mãn điều kiện .

Do đó 43 = 64.

20 tháng 12 2018

Đáp án D

· Điều kiện cần:

Giả sử phương trình đã cho có 3 nghiệm phân biệt x 1 ; x 2 ; x 3  lập thành một cấp số cộng

 Khi đó: x 1 + x 3 = 2 x 2 x 1 + x 2 + x 3 = 3 ⇔ 3 x 2 = 3 ⇔ x 2 = 1 .  

 Với x 2 = 1  thay vào phương trình ta được:

    1 − 3 + m + 2 − m = 0 (luôn đúng).

Phương trình đã cho có 3 nghiệm phân biệt tương đương với phương trình (*) có 2 nghiệm phân biệt khác 1.

12 tháng 7 2018

10 tháng 4 2018

Đáp án D

Đặt t = x 2 , t ≥ 0 . Ta được phương trình: t 2 − 20 t + m − 1 2 = 0 (2).

Phương trình (1) có bốn nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương t 1 , t 2  phân biệt 0 < t 1 < t 2 .

⇔ Δ ' > 0 S > 0 P > 0 ⇔ − m 2 + 2 m + 99 > 0 20 > 0 m − 1 2 > 0 ⇔ − 9 < m < 11 m ≠ 1    ∗ .

Bốn nghiệm của phương trình (1) lập thành cấp số cộng là:  − t 2 , − t 1 , t 1 , t 2 .

Ta có: − t 2 + t 1 = − 2 t 1 − t 1 + t 2 = 2 t 1 ⇔ 3 t 1 = t 2 ⇔ t 2 = 9 t 1 .

Theo định lý Viet, ta có:  t 2 = 9 t 1 t 1 + t 2 = 20 t 1 . t 2 = m − 1 2 ⇔ t 1 = 2 t 2 = 18 m − 1 2 = 36

Suy ra: m = 7  hoặc m = - 5  (thỏa ()).

Vậy tổng tất cả các giá trị m thỏa yêu cầu bài toán là: 7−5=2.

3 tháng 1 2019

8 tháng 10 2017

Đáp án B

6 tháng 5 2018

Giả sử 4 nghiệm phân biệt của phương trình là x1,x2,x3,x4.đặtx2=y≥0, ta được phương trình y2-(3m+5)y+(m+1)2=0(1)

Ta phải tìm m sao cho (1) có hai nghiệm dương phân biệt 0 < y1 < y2. Khi đó thì (1) có bốn nghiệm là: x1=-√(y2),x2=-√(y1,) x3=√(y1),x4=√(y2).

Theo đầu bài bốn nghiệm lập thành một cấp số cộng, nên x3+x1=2x2 và x4+x2=2x3

Áp dụng định lý Vi-et cho phương trình (1). Ta có hệ:

Δ = 3 m + 5 2 − 4 m + 1 2 > 0 S = 3 m + 5 > 0 P = m + 1 2 > 0 ⇔ 5 m 2 + 22 m + 21 > 0 m > − 5 3 m ≠ − 1 ⇔ m > − 7 5 m < − 3 m > − 5 3 m ≠ − 1

⇒ m > − 7 5 và  m ≠ − 1

Thay   9 y 1 = y 2 vào định lí Viet  y 1 + y 2 = 3 m + 5 y 1 . y 2 = m + 1 2

           

Giải (*)

 

  19 m 2 − 70 m − 125 = 0 ⇔ m = 5 m = − 25 19           

Chọn B