K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

Điểm M nằm giữa A và B nên: AB = AM + MB = 4 + 8 = 12cm

Áp dụng hệ quả định lí Ta let ta có;

Bài tập: Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

21 tháng 10 2019

Do M nằm giữa A và B nên: AB = AM + MB = 13 + 11 = 24 cm

Theo hệ quả định lí Ta let ta có:

Bài tập: Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

16 tháng 12 2019

a

Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)

\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)

Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)

Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)

b

Hạ \(NH\perp BC;MG\perp BC\)

Áp dụng định lý Pythagoras vào tam giác ABC ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)

Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND

Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )

Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.

Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:( 

7 tháng 9 2017

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) Xét tam giác \(ABC\) có \(B'C'//BC\) nên theo định lí Thales ta có:

\(\frac{{AB'}}{{AB}} = \frac{{AC'}}{{AC}} \Rightarrow \frac{2}{6} = \frac{{AC'}}{8}\). Do đó, \(AC' = \frac{{2.8}}{6} = \frac{8}{3}\left( {cm} \right)\).

Vậy \(AC' = \frac{{16}}{3}cm\).

b) Xét tam giác \(ABC\) có \(C'D//AB\) nên theo định lí Thales ta có:

\(\frac{{BD}}{{BC}} = \frac{{AC'}}{{AC}} \Rightarrow \frac{{BD}}{{10}} = \frac{{\frac{8}{3}}}{8}\). Do đó, \(BD = \frac{{10.\frac{8}{3}}}{8} = \frac{{10}}{3}\left( {cm} \right)\).

Vậy \(BD = \frac{{10}}{3}cm\).

Ta có: \(BB' = AB - AB' = 6 - 2 = 4cm\)

Vì \(\left\{ \begin{array}{l}B'C'//BC\\C'D//AB\end{array} \right. \Rightarrow \left\{ \begin{array}{l}B'C'//BD\\C'D//B'B\end{array} \right.\) (do \(D \in BC;B' \in AB\))

Xét tứ giác \(B'C'DB\) có

\(\left\{ \begin{array}{l}B'C'//BD\\C'D//B'B\end{array} \right. \Rightarrow \) tứ giác \(B'C'DB\) là hình bình hành (dấu hiệu nhận biết)

\( \Rightarrow \left\{ \begin{array}{l}B'C' = BD = \frac{{10}}{3}cm\\BB' = C'D = 4cm\end{array} \right.\) (tính chất hình bình hành)

c) Ta có: \(\frac{{AB'}}{{AB}} = \frac{2}{6} = \frac{1}{3};\frac{{AC'}}{{AC}} = \frac{{\frac{8}{3}}}{8} = \frac{1}{3};\frac{{BC'}}{{BC}} = \frac{{\frac{{10}}{3}}}{{10}} = \frac{1}{3}\)

Do đó, \(\frac{{AB'}}{{AB}} = \frac{{AC'}}{{AC}} = \frac{{B'C'}}{{BC}}\).

10 tháng 2 2018

Vì tam giác ABC cân tại A nên AB = AC = 10cm

Vì MN// BC, theo định lí Ta – let ta có:

Bài tập: Định lí Ta-lét trong tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Mà AB = AC nên AM = AN = 4cm

Suy ra :

Bài tập: Định lí Ta-lét trong tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

7 tháng 4 2022

vẽ hình(tự vẽ)

a)  Xét △ABC có MN // BC(gt) ,theo định lí Ta-lét ta có:

     \(\dfrac{AM}{MB}\)=\(\dfrac{AN}{NC}\) hay \(\dfrac{6}{4}\)=\(\dfrac{8}{NC}\)⇒NC=\(\dfrac{8.4}{6}\)=5,3(cm)

Ta có: AB=AM+BM=6+4=10(cm)

          AC=AN+NC=8+5,3=13,3(cm)

Áp dụng định lý Py-ta-go vào △ABC vuông tại A ta có:

     BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt{10^2+13,3^2}\)=\(\sqrt{276,89}\)=16,6(cm)

Xét △ABC có MN // BC,theo hệ quả định lí Ta -lét ta có:

\(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)hay \(\dfrac{6}{10}\)=\(\dfrac{MN}{16,6}\)⇒MN=\(\dfrac{16,6.6}{10}\)=9,96(cm)

b)

7 tháng 4 2022

b)Xét tứ giác BMND có: BM//DN (AB//DN theo giả thiết)

                                       BD// MN(BC//MN theo giả thiết)

  ⇒ tứ giác BMND là hình bình hành

Diện tích hình bình hành BMND là:

  \(S_{BMND}\)=AN.BM=8.4=32(\(cm^2\))