K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

Ta thấy: 1+ 2/ n^2+3n = n^2+3n+2 / n(n+3) =(n+1)(n+2) /n(n+3)

Áp dụng công thức trên,ta có:

A= (1+2/4 )(1+ 2/10)(1+2/18).....(1+2/ n^2+3n)

=(1+2 /1x4)( 1+2 /2x5)(1+2 /3x6).....[ (n+1)(n+2)/ n(n+3)]

=(2x3 /1x4)(3x4 /2x5)(4x5 /3x6).....[ (n+1)(n+2) /n(n+3)]

= 3x(n+1 /n+3)

Vì n+1 /n+3 <1 với mọi n thuộc N nên 3x(n+1 /n+3) <3

Vậy A<3

20 tháng 6 2017

\(2\left(\sqrt{n+1}-\sqrt{n}\right)=\frac{2}{\sqrt{n+1}+\sqrt{n}}< \frac{2}{2\sqrt{n}}=\frac{1}{\sqrt{n}}\)

\(2\left(\sqrt{n}-\sqrt{n-1}\right)=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{2\sqrt{n}}=\frac{1}{\sqrt{n}}\)

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

19 tháng 3 2016

\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{n\left(+1\right)}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(+1\right)}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)

=1-\(\frac{1}{1+n}\)

Vì n thuộc N => +1>0 => 1-\(\frac{1}{n+1}\)<1

Vậy biểu thức trên luôn nhỏ hơn 1

11 tháng 10 2017

khó thế