So sánh :
c, 20152016- 20152015 và 20152015- 20152014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 18:
Ta có:
\(2015^{2015}-2015^{2014}=2015^{2014}\cdot\left(2015-1\right)=2015^{2014}\cdot2014\)
\(2015^{2016}-2015^{2015}=2015^{2015}\cdot\left(2015-1\right)=2015^{2015}\cdot2014\)
Mà: \(2014< 2015\)
\(\Rightarrow2015^{2014}< 2015^{2015}\)
\(\Rightarrow2015^{2014}\cdot2014< 2015^{2015}\cdot2014\)
\(\Rightarrow2015^{2015}-2015^{2014}< 2015^{2016}-2015^{2015}\)
Vậy: ...
Ta có:
\(B=20152015.20152017=\left(20152016-1\right)\left(20152016+1\right)=20152016^2-1\)
Lại có, \(A=20152016^2\)
Vậy, \(A>B\)
Ta thấy:
A = \(\frac{20162017}{20162016}\) và B = \(\frac{20152016}{20152015}\)
A = \(\frac{20162016}{20162016}\)+ \(\frac{1}{20162016}\) = \(1\) + \(\frac{1}{20162016}\)
B = \(\frac{20152015}{20152015}\) + \(\frac{1}{20152015}\)= \(1\) + \(\frac{1}{20152015}\)
Vì: \(\frac{1}{20162016}\) \(< \) \(\frac{1}{20152015}\)
Nên: \(A\) \(< \) \(B\)
~ HokT~
20142014x20152015-20142015x20152014=20142014x(20152014+1)-(20142014+1)x20152014=20142014x20152014+20142014-20152014x20142014-20152014=(20142014x20152014-20152014x20142015)+20142014-20152014=0-10000=-10000
mặc dù câu này 6 năm trước r nhưng h mình mới giải để các bạn có thể xem =))
A=20162016/20162016 + 1/20162016=1 + 1/20162016
B=20152015/20152015 + 1/20152015=1+1/20152015
Mà 20162016>20152015-->1/20162016<1/20152015 và 1=1
=>A<B
Lời giải:
\(\sqrt{20152015}+\sqrt{20152017}-2\sqrt{20152016}=(\sqrt{20152015}-\sqrt{20152016})+(\sqrt{20152017}-\sqrt{20152016})\)
\(=\frac{-1}{\sqrt{20152015}+\sqrt{20152016}}+\frac{1}{\sqrt{20152017}+\sqrt{20152016}}\)
Dễ thấy: $0< \sqrt{20152015}+\sqrt{20152016}<\sqrt{20152017}+\sqrt{20152016}}$
$\Rightarrow \frac{1}{\sqrt{20152015}+\sqrt{20152016}}>\frac{1}{\sqrt{20152017}+\sqrt{20152016}}$
$\Rightarrow \frac{-1}{\sqrt{20152015}+\sqrt{20152016}}+\frac{1}{\sqrt{20152017}+\sqrt{20152016}}< 0$
$\Rightarrow \sqrt{20152015}+\sqrt{20152017}< 2\sqrt{20152016}$
Lời giải:
Ta có:
$\sqrt{2015.2015}+\sqrt{2015.2017}=\sqrt{2015}(\sqrt{2015}+\sqrt{2017})$
Mà:
$(\sqrt{2015}+\sqrt{2017})^2=4032+2\sqrt{2015.2017}$
$=4032+2\sqrt{(2016-1)(2016+1)}=4032+2\sqrt{2016^2-1}$
$< 4032+2\sqrt{2016^2}=4.2016$
$\Rightarrow \sqrt{2015}+\sqrt{2017}< 2\sqrt{2016}$
$\Rightarrow \sqrt{2015.2015}+\sqrt{2015.2017}=\sqrt{2015}(\sqrt{2015}+\sqrt{2017})< \sqrt{2015}.2\sqrt{2016}$
Vậy......
Ta có:
2014/2015=20142014/20152015
Vì 20142014<20142015 nên 20142014/20152015<20142015/20152015
=> Nó <
2015^2016-2015^2015 lớn hơn
tic nha